Journal List > J Rhinol > v.22(1) > 1044327

Kim, Jeon, and Woo: Development and Utilization of a Mouse Model of Nasal Polyps

Abstract

Systemic corticosteroids currently represent the most effective treatment for chronic rhinosinusitis with nasal polyps (CRSwNP), but their long-term use is constrained due to their detrimental side effects. Until recently, development of novel drugs for CRSwNP has been difficult partly due to the absence of a standard animal model of CRSwNP. Exotoxins of Staphylococcus aureus such as staphylococcal enterotoxin B (SEB), are well-known superantigens which can induce a strong immune response; there have been many studies on the association of staphylococcal enterotoxins and development of CRSwNP over the past two decades. Based on previous studies, we invented a mouse model of CRSwNP using SEB. Herein, we explain the protocol development for the mouse model, as well as identify histological and immunological similarities between this mouse model and humans. Furthermore, we describe a study that analyzed the risk factors for CRSwNP such as smoking, and also elaborate on a series of studies that searched for new potential drugs for CRSwNP, including resveratrol, anti-periostin antibody, topical hypoxia-inducible factors, and topical cyclosporine. Based on preceding studies, we have concluded that this mouse model might be a useful tool to investigate the pathophysiology and development of novel drugs for CRSwNP.

References

1). Banerji A, Piccirillo JF, Thawley SE, Levitt RG, Schechtman KB, Kramper MA, et al. Chronic rhinosinusitis patients with polyps or polypoid mucosa have a greater burden of illness. American Journal of Rhinology. 2007; 21(1):19–26.
crossref
2). Kalish L, Snidvongs K, Sivasubramaniam R, Cope D, Harvey RJ. Topical steroids for nasal polyps. Cochrane Database Syst Rev. 2012; 12:CD006549.
crossref
3). Benítez P, Alobid I, De Haro J, Berenguer J, Bernal-Sprekelsen M, Pujols L, et al. A short course of oral prednisone followed by intranasal budesonide is an effective treatment of severe nasal polyps. Laryngoscope. 2006; 116(5):770–5.
4). Bachert C, Watelet JB, Gevaert P, Van Cauwenberge P. Pharmacological management of nasal polyposis. Drugs. 2005; 65(11):1537–52.
crossref
5). Gevaert P, Van Bruaene N, Cattaert T, Van Steen K, Van Zele T, Acke F, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol. 2011; 128(5):989–95. e1–8.
crossref
6). Kim DW, Khalmuratova R, Hur DG, Jeon SY, Kim SW, Shin HW, et al. Staphylococcus aureus enterotoxin B contributes to induction of nasal polypoid lesions in an allergic rhinosinusitis murine model. Am J Rhinol Allergy. 2011; 25(6):e255–61.
crossref
7). Bachert C, Gevaert P, Holtappels G, Johansson SG, van Cauwenberge P. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol. 2001; 107(4):607–14.
crossref
8). Bachert C, van Zele T, Gevaert P, De Schrijver L, Van Cauwenberge P. Superantigens and nasal polyps. Curr Allergy Asthma Rep. 2003; 3(6):523–31.
crossref
9). Van Zele T, Gevaert P, Watelet JB, Claeys G, Holtappels G, Claeys C, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004; 114(4):981–3.
crossref
10). Van Zele T, Gevaert P, Holtappels G, van Cauwenberge P, Bachert C. Local immunoglobulin production in nasal polyposis is modulated by superantigens. Clin Exp Allergy. 2007; 37(12):1840–7.
crossref
11). Lin A, Busaba NY. Staphylococcus aureus and endoscopic sinus surgery. Curr Opin Otolaryngol Head Neck Surg. 2006; 14(1):19–22.
crossref
12). Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, et al. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol. 2001; 166(1):669–77.
13). Norlander T, Fukami M, Westrin KM, Stierna P, Carlsoo B. Formation of mucosal polyps in the nasal and maxillary sinus cavities by infection. Otolaryngol Head Neck Surg. 1993; 109(3 Pt 1):522–9.
crossref
14). Norlander T, Westrin KM, Fukami M, Stierna P, Carlsoo B. Experimentally induced polyps in the sinus mucosa: a structural analysis of the initial stages. Laryngoscope. 1996; 106(2 Pt 1):196–203.
15). Sejima T, Kajiwara D, Kikuchi H, Imayoshi S, Yamauchi T, Ichimura K. Experimentally induced eosinophilic polyps in rabbit sinuses. Am J Rhinol Allergy. 2010; 24(5):341–7.
crossref
16). Kim HS, Jeon SY, Ahn SK, Kim JP, Park JJ, Jeong JH, et al. A Rat Model of Acute Bacterial Rhinosinusitis Induced by Staphylococcus Aureus. Korean J Otolaryngol-Head Neck Surg. 2005; 48(6):735–40.
17). Khalmuratova R, Jeon SY, Ahn SK, Kim JP, Park JJ, Lim JB, et al. A Rat Model of Acute Rhinosinusitis Induced by Alpha-Toxin of Staphylococcus Aureus. J Rhinol. 2007; 14(1):21–6.
18). Ahn SK, Jeon SY, Khalmuratov R, Kim DJ, Kim JP, Park JJ, et al. Rat Model of Staphylococcal Enterotoxin B-Induced Rhinosinusitis. Clin Exp Otorhinolaryngol. 2008; 1(1):24–8.
crossref
19). Saloga J, Gelfand EW, Knop J. Superantigens. Exp Dermatol. 1996; 5(2):65–71.
crossref
20). Zhang N, Van Zele T, Perez-Novo C, Van Bruaene N, Holtappels G, DeRuyck N, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008; 122(5):961–8.
crossref
21). Lee KI, Kim DW, Kim EH, Kim JH, Samivel R, Kwon JE, et al. Cigarette smoke promotes eosinophilic inflammation, airway remodeling, and nasal polyps in a murine polyp model. Am J Rhinol Allergy. 2014; 28(3):208–14.
crossref
22). Pezzuto JM. The phenomenon of resveratrol: redefining the virtues of promiscuity. Ann N Y Acad Sci. 2011; 1215:123–30.
crossref
23). Edwards JA, Beck M, Riegger C, Bausch J. Safety of resveratrol with examples for high purity, trans-resveratrol, resVida (R). Ann N Y Acad Sci. 2011; 1215:131–7.
24). Kim SW, Kim DW, Khalmuratova R, Kim JH, Jung MH, Chang DY, et al. Resveratrol prevents development of eosinophilic rhinosinusitis with nasal polyps in a mouse model. Allergy. 2013; 68(7):862–9.
crossref
25). Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res. 1999; 14(7):1239–49.
26). Stankovic KM, Goldsztein H, Reh DD, Platt MP, Metson R. Gene expression profiling of nasal polyps associated with chronic sinusitis and aspirin-sensitive asthma. Laryngoscope. 2008; 118(5):881–9.
crossref
27). Kim SW, Kim JH, Jung MH, Hur DG, Lee HK, Jeon SY, et al. Peri-ostin may play a protective role in the development of eosinophilic chronic rhinosinusitis with nasal polyps in a mouse model. Laryngoscope. 2013; 123(5):1075–81.
crossref
28). Zhou G, Dada LA, Wu M, Kelly A, Trejo H, Zhou Q, et al. Hypox-ia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol. 2009; 297(6):L1120–30.
crossref
29). Shin HW, Cho K, Kim DW, Han DH, Khalmuratova R, Kim SW, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. American Journal of Respiratory and Critical Care Medicine. 2012; 185(9):944–54.
crossref
30). Romero Palacios PJ. [ Asthma and tobacco smoke]. Arch Bronco-neumol. 2004; 40(9):414–8.
31). Ramadan HH, Hinerman RA. Smoke exposure and outcome of endoscopic sinus surgery in children. Otolaryngol Head Neck Surg. 2002; 127(6):546–8.
crossref
32). Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000; 47(2–3):119–25.
crossref
33). Pacharn P, Vichyanond P. Immunomodulators for conjunctivitis. Curr Opin Allergy Clin Immunol. 2013; 13(5):550–7.
crossref
34). Chang DY, Joo YH, Kim SJ, Kim JH, Jung MH, Kim DW, et al. Therapeutic effects of intranasal cyclosporine for eosinophilic rhinosinusitis with nasal polyps in a mouse model. Am J Rhinol Allergy. 2015; 29(1):29–32.
crossref
TOOLS
Similar articles