Journal List > Hanyang Med Rev > v.30(3) > 1044055

Shin: Eosinophil and Tissue-invasive Parasitic Helminth

Abstract

Eosinophils are primarily tissue resident cells, and play important roles in host's immune responses and maintenance of chronic infection during infection with tissue-invasive parasitic helminth. Such parasite secretes particular molecules to evade eosinophil-mediated helminthotoxicity. Continuous competition between eosinophil and parasite leads to stable equilibria between them. Recent evidence provides a concept that not only eosinophils contribute to parasite's survival but also parasite modulates host's immune response. Therefore, it is important to know complex interrelationship between eosinophil and parasite to understand how gently parasite talk to eosinophils and how carefully eosinophils listen to parasite's voice. In this regard, this review examin papers about eosinophil-mediated tissue inflammatory responses in response to helminthic parasite.

Figures and Tables

Fig. 1
Degranulation of human eosinophil via exocytosis.
hmr-30-238-g001

References

1. Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009. 182:1577–1583.
crossref
2. Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM. Immunopathogenesis of schistomiasis. Immunol Rev. 2004. 201:156–167.
3. Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol. 2007. 119:1303–1310.
crossref
4. Horie S, Gleich GJ, Kita H. Cytokines directly induce degranulation and superoxide production from human eosinophils. J Allergy Clin Immunol. 1996. 98:371–381.
crossref
5. Kita H. The eosinophils: a cytokine-producing cells? J Allergy Clin Immunol. 1996. 97:889–892.
6. Shi HZ. Eosinophils function as antigen-presenting cells. J Leukoc Biol. 2004. 76:520–527.
crossref
7. Dvorak AM, Weller PF. Ultrastructural analysis of human eosinphils. Chem Immunol. 2000. 76:1–28.
8. Ackerman SJ, Liu L, Kwatia MA, Savage MP, Leonidas DD, Swaminthan GJ, Acharya KR. Charcot-Leyden crystal protein (galectin-10) is not a dual function galectin with lysophopholipase activity but binds a lysophosphoslipase inhibitor in a novel structural fashin. J Biol Chem. 2002. 277:14859–14868.
crossref
9. Young AR, Barcham GJ, Kemp JM, Dunphu JL, Nash A, Meeusen EN. Functional characterization of an eosinophil-specific galectin, ovine galectin-14. Glycoconj J. 2009. 26:423–432.
crossref
10. Min DY, Ryu JS, Shin MH. Changes of IgE production, splenic helper and suppressor T lymphocytes in mice infected with Paragonimus westermani. Korean J Parasitol. 1993. 31:231–238.
crossref
11. Nutman TB. Evaluation and differential diagnosis of marked, persistent eosinophilia. Immunol Allergy Clin North Am. 2007. 27:529–549.
crossref
12. Bruschi F, Korenaga M, Watanabe N. Eosinophils and Trichinella infection: toxic for the parasite and the host. Trends Parasitol. 2008. 24:462–467.
crossref
13. Mir A, Benahmed D, Igual R, Borras R, O'Connor JE, Moreno MJ, Rull S. Eosinophil-selective mediators in human strongyloidiasis. Parasite Immunol. 2006. 28:397–400.
crossref
14. Litvinova LS, Riazantseva NV, Novitskii VV. Dysregulation of cooperative interactions of immunocytes and eosinophils in the mechanism of development of eosinophilia in Opisthorchis felineus invasion. Med Parazitol (Mosk). 2008. 3:13–17.
15. Tuner DG, Wildblood LA, Inglis NF, Jones DG. Characterization of a galectin-like activity from the parasitic nematode, Haemonchus contortus, which modulates ovine eosinophil migration in vitro. Vet Immunol Immunopathol. 2008. 122:138–145.
16. Matsushita N, Nishi N, Seki M, Matsumoto R, Kuwavara I, Liu FT, Hata Y, Nakamura T, Hirashima M. Requirement of divalent galactoside-binding activity of ecalectin/galectin-9 for eosinophil chemoattraction. J Biol Chem. 2000. 275:8355–8360.
crossref
17. Rao SP, Wang Z, Zuberi RI, Sikora L, Bahaie NS, Zuraw BL, Liu FT, Sriramarao P. Galectin-3 functions as an adhesion molecules to support eosinophil rolling and adhesion under conditions of flow. J Immunol. 2007. 179:7800–7807.
crossref
18. Ramos AL, Discipio RG, Ferreira AM. Eosinophil cationic protein damages protoscoleces in vitro and is present in the hydatid cyst. Parasite Immunol. 2006. 28:347–355.
crossref
19. Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, Capron M. High-affinity IgE receptor on eosinophils is involved in defense against parasites. Nature. 1994. 367:183–186.
crossref
20. Kita H, Kaneko M, Bartemes KR, Weiler DA, Schimming AW, Reed CE, Gleich GJ. Does IgE bind to and activate eosinophils from patients with allergy? J Immunol. 1999. 162:6901–6911.
21. Shin MH, Chung YB, Kita H. Degranulation of human eosinophils induced by Paragonimus westermani-secreted protease. Korean J Parasitol. 2005. 43:33–37.
crossref
22. Chung YB, Kita H, Shin MH. A 27 kDa cysteine protease secreted by newly excysted Paragonimus westermani metacercariae induces superoxide anion production and degranulation of human eosinophils. Korean J Parasitol. 2008. 46:95–99.
crossref
23. Thomas LL, Page SM. Inflammatory cell activation by eosinophil granule proteins. Chem Immunol. 2000. 76:99–117.
crossref
24. Someya A, Nishijima K, Nunoi H, Irie S, Nagoaka I. Study on the superoxide-producing enzymes of eosinphils and neutrophils: Comparison of the NADPH oxidase components. Arch Biochem Biophys. 1997. 345:207–213.
crossref
25. Triggiani M, Calabrese C, Granata F, Gentile M, Marone G. Metabolism of lipid mediators in human eosinophils. Chem Immunol. 2000. 76:77–98.
crossref
26. Hogaboam CM, Befus AD, Wallace JL. Intestinal platelet-activation factor synthesis during Nippostrongylys brasiliensis infection in the rat. J Lipid Mediat. 1991. 4:211–224.
27. Moqbel R, Macdonald AJ, Cromwell O, Kay AB. Release of leukotriene C4 (LTC4) from human eosinophils following adherence to IgE- and IgG-coated schistosomula of Schistosoma mansoni. Immunology. 1990. 69:435–442.
28. Machado ER, Veta MT, Lourenco EV, Anibal FF, Sorgi CA, Soares EG, Roque-Barreira MC, Medeiros AI, Faccioli LH. Leukotrienes play a role in the control of parasite burden in murine strongyloidiasis. J Immunol. 2005. 175:3892–3899.
crossref
29. Kubata BK, Duszenko M, Martin KS, Urade Y. Molecular basis for prostaglandin production in hosts and parasites. Trends Parasitol. 2007. 23:325–331.
crossref
30. Mita H, Hasegawa M, Higashi N, Akiyama K. Characterization of PGE2 receptor subtypes in human eosinophils. J Allergy Clin Immunol. 2002. 110:457–459.
crossref
31. Walsh KP, Brady MT, Finlay CM, Boon L, Mils KH. Infection with a helminth parasite attenuates autoimmunity through TGF-β-mediated immune suppression of Th17 and Th1 responses. J Immunol. 2009. 183:1577–1586.
crossref
32. Mearns S, Horsnell WG, Hoving JC, Dewals B, Cutler AJ, Kirstein F, Myburgh E, Arendse B, Brombacher F. Interleukin-4-promoted T helper 2 responses enhance Nippostrongylus brasiliensis-induced pulmonary pathology. Infect Immun. 2008. 76:5535–5542.
crossref
33. Shin MH, Seoh JY, Park HY, Kita H. Excretory-secretory products secreted by Paragonimus westermani delay the spontaneous cell death of human eosinophils through autocrine production of GM-CSF. Int Arch Allergy Immunol. 2003. 132:48–57.
crossref
34. Shin MH, Lee SY. Proteolytic activity of cysteine protease in excretory-secretory product of Paragonimus westermani newly excysted metacercariae pivotally regulates IL-8 production of human eosinophils. Parasite Immunol. 2000. 22:529–533.
crossref
35. Tai PC, Sun L, Spry CJ. Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin Exp Immunol. 1991. 85:312–326.
crossref
36. Lampinen M, Rak S, Venge P. The role of interleukin-5, interleukin-8 and RANTES in the chemotactic attraction of eosinophils to the allergic lung. Clin Exp Allergy. 1999. 29:314–322.
crossref
37. Gounni AA, Gregory B, Nutku E, Aris F, Latifa K, Minshall E, North J, Tavernier J, Levit R, Nicolaides N, Robinson D, Hamid Q. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood. 2000. 96:2163–2171.
crossref
38. Horie S, Okubo Y, Hossain M, Sato E, Nomura H, Koyama S, Suzuki J, Isobe M, Sekiguchi M. Interleukin-13 but not interleukin-4 prolongs eosinophil survival and induces eosinophil chemotaxis. Intern Med. 1997. 36:179–185.
crossref
39. Suzukawa M, Koketsu R, Iikura M, Nakae S, Matsumoto K, Nagase H, Saito H, Matsushima K, Ohta K, Yamamoto K, Yamaguchi M. Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab Invest. 2008. 88:1245–1253.
crossref
40. Peacock CD, Misso NL, Watkins DN, Thompson PJ. PGE2 and dibutyryl cyclic adenosine monophosphate prolong eosinophil survival in vitro. J Allergy Clin Immunol. 1999. 104:153–162.
crossref
41. Meerschaert J, Busse WW, Bertics PJ, Mosher DF. CD14+ cells are necessary for increased survival of eosinophils in response to lipopolysaccharide. Am J Respir Cell Mol Biol. 2000. 23:780–787.
crossref
42. Min DY, Lee YA, Ryu JS, Ahn MH, Chung YB, Sim S, Shin MH. Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int Arch Allergy Immunol. 2004. 133:357–364.
crossref
43. Serradell MC, Guasconi L, Cervi L, Chiapello LS, Masih DT. Excretory-secretory products from Fasciola hepatica induce eosinophil apoptosis by a caspase-dependent mechanism. Vet Immunol Immunopathol. 2007. 117:197–208.
crossref
44. Serradell MC, Guasconi L, Masih DT. Involvement of mitochondrial pathway and key role of hydrogen peroxide during eosinophil apoptotosis induced by excretory-secretory products from Fasciola hepatica. Mol Biochem Parasitol. 2009. 163:95–106.
crossref
45. Lee KH, Park HK, Jeong HJ, Park SK, Lee SJ, Choi SH, Cho MK, Ock MS, Hong YC, Yu HS. Immunization of proteins from Toxascaris leonine adult worms inhibits allergic Th2 responses. Vet Parasitol. 2008. 156:216–225.
crossref
46. Park SK, Cho MK, Park HK, Lee KH, Lee SJ, Choi SH, Ock MS, Jeong HJ, Lee MH, Yu HS. Macrophage migration inhibitory factor homologes of Anisakis simplex suppress Th2 responses in allergic airway inflammation model via CD4+CD25+Foxp3+ T cell recruitment. J Immunol. 2009. 182:6907–6914.
crossref
47. Rzepecka J, Donskow-Schmelter K, Doligalska M. Heligmosmoides polygyrus infection down-regulates eotaxin concentration and CCR3 expression on lung eosinophils in murine allergic pulmonary inflammation. Parasite Immunol. 2007. 29:405–413.
crossref
48. Giacomin PR, Cava M, Tumes DJ, Gauld AD, Iddawela DR, McColl SR, Parsons JC, Gordon DL, Dent LA. Toxocara canis larval excretory-secretory proteins impair eosinophil-dependent resistance of mice to Nippostrongylus brasiliensis. Parasite Immunol. 2008. 30:435–445.
crossref
49. Shin MH, Kita H, Park HY, Seoh JY. Cysteine protease secreted by Paragonimus westermani attenuates effector functions of human eosinophils stimulated with immunoglobulin G. Infect Immun. 2001. 69:1599–1604.
crossref
50. Carmona C, Dowd AJ, Smith AM, Dalton JP. Cathepsin L proteinase secreted by Fasciola hepatica in vitro prevents antibody-mediated eosnophil attachment to newly excysted juveniles. Mol Biochem Parasitol. 1993. 62:9–17.
crossref
51. Culley FJ, Brown A, Conroy DM, Sabroe I, Pritchard DI, Williams TJ. Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo. J Immunol. 2000. 165:6447–6453.
crossref
TOOLS
Similar articles