Journal List > J Korean Foot Ankle Soc > v.21(4) > 1043424

Seo: Diagnosis and Treatment of Early Ankle Osteoarthritis

Abstract

The incidence of arthritis in the ankle is relatively low compared to other joints. On the other hand, it receives a lot of pressure per unit area, is vulnerable to damage, and arthritis can arise after trauma. Early ankle arthritis can be considered a case of osteophyte subchondral sclerosis without narrowing of the joint space. Conservative treatment, such as weight control, insole use, drug use, and injection therapy for early ankle arthritis, is effective and can be considered before surgical treatment. Nevertheless, if pain is persistent, surgical treatment to remove bony spurs is effective. Ensuring that there is no other cause of pain when deciding whether to perform an operation is very important.

Figures and Tables

Figure 1

Simple radiographs of ankle anteroposterior (A) and lateral (B) show osteopyhte and early sclerosis.

jkfas-21-117-g001
Figure 2

Simple radiographs of early osteoarthritis.

jkfas-21-117-g002
Figure 3

Computed tomography (CT) of early ankle osteoarthritis. CT shows the medial osteophyte.

jkfas-21-117-g003
Table 1

Osteoarthritis Classification of Kellgren-Lawence

jkfas-21-117-i001
Grade Definition
0 Normal
1 Doubtful narrowing of joint space, possible osteophyte
2 Definite osteophyte, possible narrowing
3 Moderate multiple osteophyte, definite narrowing, some sclerosis, possible deformity of bone ends
4 Large osteophytes, marked narrowing, severe sclerosis, definite deformity of bone ends
Table 2

Osteoarthritis Classification of Takakura

jkfas-21-117-i002
Stage Definition
I No joint space narrowing but early sclerosis and osteophyte formation
II Narrowing of the joint space medially
IIIa Obliteration of the joint space limited to the facet of medial malleolus with subchondral bone contact
IIIb Obliteration of the joint space advanced to the roof of the talar dome with subchondral bone contact
IV Obliteration of the joint space with complete bone contact

Notes

The contents of this paper are presented at the 2017 Spring Congress of the Korean Orthopaedic Association.

Financial support None.

Conflict of interest None.

References

1. Saltzman CL, Salamon ML, Blanchard GM, Huff T, Hayes A, Buckwalter JA, et al. Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. Iowa Orthop J. 2005; 25:44–46.
2. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009; 467:1800–1806.
crossref
3. Lateef S, Golightly YM, Renner JB, Jordan JM, Nelson AE. A cross-sectional analysis of radiographic ankle osteoarthritis frequency and associated factors: the Johnston county osteoarthritis project. J Rheumatol. 2017; 44:499–504.
crossref
4. Beaudoin AJ, Fiore SM, Krause WR, Adelaar RS. Effect of isolated talocalcaneal fusion on contact in the ankle and talonavicular joints. Foot Ankle. 1991; 12:19–25.
crossref
5. Ihn JC, Kim SJ, Park IH. In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy. Int Orthop. 1993; 17:214–218.
crossref
6. Athanasiou KA, Niederauer GG, Schenck RC Jr. Biomechanical topography of human ankle cartilage. Ann Biomed Eng. 1995; 23:697–704.
crossref
7. Kempson GE. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta. 1991; 1075:223–230.
crossref
8. Chubinskaya S, Huch K, Mikecz K, Cs-Szabo G, Hasty KA, Kuettner KE, et al. Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Lab Invest. 1996; 74:232–240.
9. Huch K, Wilbrink B, Flechtenmacher J, Koepp HE, Aydelotte MB, Sampath TK, et al. Effects of recombinant human osteogenic protein 1 on the production of proteoglycan, prostaglandin E2, and interleukin-1 receptor antagonist by human articular chondrocytes cultured in the presence of interleukin-1beta. Arthritis Rheum. 1997; 40:2157–2161.
crossref
10. Cushnaghan J, Dieppe P. Study of 500 patients with limb joint osteoarthritis. I. Analysis by age, sex, and distribution of symptomatic joint sites. Ann Rheum Dis. 1991; 50:8–13.
crossref
11. Saltzman C. Editorial: why ankle replacement? Clin Orthop Relat Res. 2004; (424):2.
12. Tuominen EK, Kankare J, Koskinen SK, Mattila KT. Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol. 2013; 200:146–148.
crossref
13. Hassink G, Testa EA, Leumann A, Hügle T, Rasch H, Hirschmann MT. Intra- and inter-observer reliability of a new standardized diagnostic method using SPECT/CT in patients with osteochondral lesions of the ankle joint. BMC Med Imaging. 2016; 16:67.
crossref
14. Saltzman CL, Shurr D, Kamp J, Cook TA. The leather ankle lacer. Iowa Orthop J. 1995; 15:204–208.
15. Pekarek B, Osher L, Buck S, Bowen M. Intra-articular corticosteroid injections: a critical literature review with up-to-date findings. Foot (Edinb). 2011; 21:66–70.
crossref
16. Repetto I, Biti B, Cerruti P, Trentini R, Felli L. Conservative treatment of ankle osteoarthritis: can platelet-rich plasma effectively postpone surgery? J Foot Ankle Surg. 2017; 56:362–365.
crossref
17. DeGroot H 3rd, Uzunishvili S, Weir R, Al-omari A, Gomes B. Intra-articular injection of hyaluronic acid is not superior to saline solution injection for ankle arthritis: a randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am. 2012; 94:2–8.
crossref
18. Witteveen AG, Sierevelt IN, Blankevoort L, Kerkhoffs GM, van Dijk CN. Intra-articular sodium hyaluronate injections in the osteoarthritic ankle joint: effects, safety and dose dependency. Foot Ankle Surg. 2010; 16:159–163.
crossref
19. Witteveen AG, Hofstad CJ, Kerkhoffs GM. Hyaluronic acid and other conservative treatment options for osteoarthritis of the ankle. Cochrane Database Syst Rev. 2015; (10):CD010643.
crossref
20. Ogilvie-Harris DJ, Gilbart MK, Chorney K. Chronic pain following ankle sprains in athletes: the role of arthroscopic surgery. Arthroscopy. 1997; 13:564–574.
crossref
21. Tol JL, Verheyen CP, van Dijk CN. Arthroscopic treatment of anterior impingement in the ankle. J Bone Joint Surg Br. 2001; 83:9–13.
crossref
22. Parma A, Buda R, Vannini F, Ruffilli A, Cavallo M, Ferruzzi A, et al. Arthroscopic treatment of ankle anterior bony impingement: the long-term clinical outcome. Foot Ankle Int. 2014; 35:148–155.
23. Choi WJ, Choi GW, Kwon HM, Lee JW. Arthroscopic treatment in mild to moderate osteoarthritis of the ankle. Knee Surg Sports Traumatol Arthrosc. 2013; 21:1338–1344.
crossref
24. Hassouna H, Kumar S, Bendall S. Arthroscopic ankle debridement: 5-year survival analysis. Acta Orthop Belg. 2007; 73:737–740.
25. Buda R, Castagnini F, Cavallo M, Ramponi L, Vannini F, Giannini S. "One-step" bone marrow-derived cells transplantation and joint debridement for osteochondral lesions of the talus in ankle osteoarthritis: clinical and radiological outcomes at 36 months. Arch Orthop Trauma Surg. 2016; 136:107–116.
crossref
TOOLS
Similar articles