Journal List > J Korean Med Assoc > v.53(4) > 1042257

Park: Molecular Pathogenesis of Gastric Cancer

Abstract

In this article, I will survey the major genetic susceptibility and somatic genetic alterations involved in gastric cancer and adenoma. These include germline and somatic genetic alterations in oncogenes, tumor suppressor genes, and apoptosis-related genes. A small proportion of gastric cancers arise as a consequence of hereditary predisposition caused by specific germline mutations in E-cadherin, mismatch repair genes, adenomatous polyposis coli, and STK11. Aberrant expression of activation induced cytidine deaminase, triggered by Helicobacter pylori infection, accumulates with genetic mutations of oncogenes and tumor suppressor genes, including p53 and CTNNB1. Inactivation of trefoil factor family 1, which is a gastric specific tumor suppressor, occurs in gastric adenomas and cancers. Ectopic expression of CDX2 leads to intestinal metaplasia and defective Cdx2 expression accelerates the transformation of metaplastic cells to gastric cancer. Genetic alterations of p53 and genes related to Wnt signaling pathway and microsatellite instability occur early in the development of gastric carcinoma, indicating that detection of certain genetic alterations in adenomas may be indicative of malignant transformation. In addition, inactivation of apoptosis-inducing gene caused by mutations may be an escaping mechanism against apoptotic cell death and contribute to the progression of gastric cancer. Although the results of many studies are contradictory with one another, genetic alterations in oncogenes and tumor suppressor genes are present even in gastric adenoma and increase in frequency during multistep gastric carcinogenesis. Genetic alterations described herein, and from as yet unidentified target genes in gastric cancer cells, will guide us towards more effective risk assessment, diagnosis, and treatment.

REFERENCES

1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007; 57:43–66.
crossref
2. Ahn YO, Park BJ, Yoo KY, Kim NK, Heo DS, Lee JK, Ahn HS, Kang DH, Kim H, Lee MS, Park TS. Incidence estimation of stomach cancer among Koreans. J Korean Med Sci. 1991; 6:7–14.
crossref
3. Lee HJ, Yang HK, Ahn YO. Gastric cancer in Korea. Gastric Cancer. 2002; 5:177–182.
crossref
4. Taylor DN, Blaser MJ. The epidemiology of Helicobacter pylori infection. Epidemiol Rev. 1991; 13:42–59.
crossref
5. Graham DY. Helicobacter pylori infection in the pathogenesis of duodenal ulcer and gastric cancer: a model. Gastroenterology. 1997; 113:1983–1991.
crossref
6. Stadtlander CT, Waterbor JW. Molecular epidemiology, pathogenesis and prevention of gastric cancer. Carcinogenesis. 1999; 20:2195–2208.
7. IARC Working group. Monographs on the evaluation of the carcinogenic risks to humans: schistosomes, liver flukes and Helicobacter pylori. IARC. 1994; 61:177–241.
8. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002; 347:1175–1186.
9. Kuipers EJ, Uyterlinde AM, Pena AS, Roosendaal R, Pals G, Nelis GF, Festen HP, Meuwissen SG. Longterm sequelae of Helicobacter pylori gastritis. Lancet. 1995; 345:1525–1528.
crossref
10. Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils. Gastroenterology. 1998; 115:642–648.
crossref
11. Hamajima N, Naito M, Kondo T, Goto Y. Genetic factors involved in the development of Helicobacter pylori-related gastric cancer. Cancer Sci. 2006; 97:1129–1138.
crossref
12. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histoclinical classification. Acta Pathol Microbiol Scand. 1965; 64:31–49.
13. Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer. 2003; 3:592–600.
crossref
14. Nishimura T. Total number of genome alterations in sporadic gastrointestinal cancer inferred from pooled analyses in the literature. Tumour Biol. 2008; 29:343–350.
crossref
15. Kunkel TA, Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000; 69:497–529.
crossref
16. Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci USA. 2003; 100:776–781.
crossref
17. Sipponen P, Kekki M, Haapakoski J, Ihamäk T, Siurala M. Gastric cancer risk in chronic atrophic gastritis: Statistical calculations of cross-sectional data. Int J Cancer. 1985; 35:173–177.
18. Kimura K. Gastritis and gastric cancer. Asia. Gastroenterol Clin North Am. 2000; 29:609–621.
crossref
19. Leung WK, Ng EK, Chan WY, Auyeung AC, Chan KF, Lam CC, Chan FK, Lau JY, Sung JJ. Risk factors associated with the development of intestinal metaplasia in first-degree relatives of gastric cancer patients. Cancer Epidemiol Biomarkers Prev. 2005; 14:2982–2986.
crossref
20. Guilford PJ, Hopkins JB, Grady WM, Markowitz SD, Willis J, Lynch H, Rajput A, Wiesner GL, Lindor NM, Burgart LJ, Toro TT, Lee D, Limacher JM, Shaw DW, Findlay MP, Reeve AE. E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat. 1999; 14:249–255.
crossref
21. Gayther SA, Gorringe KL, Ramus SJ, Huntsman D, Roviello F, Grehan N, Machado JC, Pinto E, Seruca R, Halling K, MacLeod P, Powell SM, Jackson CE, Ponder BA, Caldas C. Identification of germline E-cadherin mutations in gastric cancer families of European origin. Cancer Res. 1998; 58:4086–4089.
22. Yoon KA, Ku JL, Yang HK, Kim WH, Park SY, Park JG. Germline mutations of E-cadherin gene in Korean familial gastric cancer patients. J Hum Genet. 1999; 44:177–180.
crossref
23. Stone P, Hardy J, Broadley K, Tookman AJ, Kurowska A, A? Hern R. Fatigue in advanced cancer: a prospective controlled cross-sectional study. Br J Cancer. 1999; 79:1479–1486.
crossref
24. Lynch HT, Smyrk TC, Watson P, Lanspa SJ, Lynch JF, Lynch PM, Cavalieri RJ, Boland CR. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology. 1993; 104:1535–1549.
crossref
25. Peltomaki P. Deficient DNA mismatch repair: A common etiologic factor for colon cancer. Hum Mol Genet. 2001; 121:1005–1008.
crossref
26. Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP, Järvinen HJ. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int J Cancer. 1997; 74:551–555.
crossref
27. Renkonen-Sinisalo L, Sipponen P, Aarnio M, Julkunen R, Aaltonen LA, Sarna S, Järvinen HJ, Mecklin JP. No support for endoscopic surveillance for gastric cancer in hereditary nonpolyposis colorectal cancer. Scand J Gastroenterol. 2002; 37:574–577.
crossref
28. Wallace MH, Phillips RK. Upper gastrointestinal disease in patients with familial adenomatous polypsis. Br J Surg. 1998; 85:742–750.
29. Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart LJ, Ahlquist DA, Podratz KC, Pittelkow M, Hartmann LC. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med. 1998; 128:896–899.
crossref
30. Giardiello FM, Welsh SB, Hamilton SR, Offerhaus GJ, Gittelsohn AM, Booker SV, Krush AJ, Yardley JH, Luk GD. Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med. 1987; 316:1511–1514.
crossref
31. Varley JM, McGown G, Thorncroft M, Tricker KJ, Teare MD, Santibanez-Koref MF, Martin J, Birch JM, Evans DG. An extended Li-Fraumeni kindred with gastric carcinoma and a codon 175 mutation in TP53. J Med Genet. 1995; 32:942–945.
crossref
32. Peek RM Jr, Biaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev Cancer. 2002; 2:28–37.
crossref
33. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, Azuma T, Okazaki I, Hondo T, Chiba T. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med. 2007; 13:470–476.
crossref
34. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999; 274:18470–18476.
crossref
35. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000; 102:565–575.
crossref
36. Rucci F, Cattaneo L, Marrella V, Sacco MG, Sobacchi C, Lucchini F, Nicola S, Bella SD, Villa ML, Imberti L, Gentili F, Montagna C, Tiveron C, Tatangel L, Facchetti F, Vezzoni P, Villa A. Tissue-specific sensitivity to AID expression in transgenic mouse models. Gene. 2006; 377:150–158.
crossref
37. Kim CJ, Song JH, Cho YG, Cao Z, Kim SY, Nam SW, Lee JY, Park WS. Activation-induced cytidine deaminase expression in gastric cancer. Tumour Biol. 2007; 28:333–339.
crossref
38. Umeda M, Murata-Kamiya N, Saito Y, Ohba Y, Takahashi M, Hatakeyama M. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem. 2009; 284:22166–22172.
crossref
39. Machado AM, Figueiredo C, Touati E, Máximo V, Sousa S, Michel V, Carneiro F, Nielsen FC, Seruca R, Rasmussen LJ. Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells. Clin Cancer Res. 2009; 15:2995–3002.
40. Thim L. A new family of growth factor-like peptides. ?Trefoil? disulphide loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmolytic polypeptide (PSP), and frog skin peptides (spasmolysins). FEBS Lett. 1989; 250:85–90.
crossref
41. Wright NA, Hoffmann W, Otto WR, Rio MC, Thim L. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett. 1997; 408:121–123.
crossref
42. Wong WM, Poulsom R, Wright NA. Trefoil peptides. Gut. 1999; 44:890–895.
crossref
43. Seib T, Blin N, Hilgert K, Seifert M, Theisinger B, Engel M, Dooley S, Zang KD, Welter C. The three human trefoil genes TFF1, TFF2, and TFF3 are located within a region of 55 kb on chromosome 21q22.3. Genomics. 1997; 40:200–202.
crossref
44. Park WS, Oh RR, Park JY, Yoo NJ, Lee SH, Shin MS, Kim SY, Kim YS, Lee JH, Kim HS, An WG, Lee JY. Mapping of a new target region of allelic loss at 21q22 in primary gastric cancers. Cancer Lett. 2000; 159:15–21.
crossref
45. Machado JC, Carneiro F, Blin N, Sobrinho-Simões M. Pattern of pS2 protein expression in premalignant and malignant lesions of gastric mucosa. Eur J Cancer Prev. 1996; 5:169–179.
crossref
46. Henry JA, Bennett MK, Piggott NH, Levett DL, May FE, Westley BR. Expression of the pNR-2/pS2 protein in diverse human epithelial tumours. Br J Cancer. 1991; 64:677–682.
crossref
47. Müller W, Borchard F. pS2 protein in gastric carcinoma and normal gastric mucosa: association with clincopathological parameters and patient survival. J Pathol. 1993; 171:263–269.
48. Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, Wendling C, Tomasetto C, Chambon P, Rio MC. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science. 1996; 274:259–262.
crossref
49. Calnan DP, Westley BR, May FE, Floyd DN, Marchbank T, Playford RJ. The trefoil peptide TFF1 inhibits the growth of the human gastric adenocarcinoma cell line AGS. J Pathol. 1999; 188:312–317.
crossref
50. Park WS, Oh RR, Park JY, Lee JH, Shin MS, Kim HS, Lee HK, Kim YS, Kim SY, Lee SH, Yoo NJ, Lee JY. Somatic mutations of the trefoil factor family 1 gene in gastric cancer. Gastroenterology. 2000; 119:691–698.
crossref
51. Yio X, Diamond M, Zhang JY, Weinstein H, Wang LH, Werther L, Itzkowitz S. Trefoil factor family-1 mutations enhance gastric cancer cell invasion through distinct signaling pathways. Gastroenterology. 2006; 130:1696–1706.
crossref
52. Silberg DG, Swain GP, Suh ER, Traber PG. Cdx1 and cdx2 expression during intestinal development. Gastroenterology. 2000; 119:961–971.
crossref
53. Eda A, Osawa H, Yanaka I, Satoh K, Mutoh H, Kihira K, Sugano K. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia. J Gastroenterol. 2002; 37:94–100.
crossref
54. Drummond FJ, Sowden J, Morrison K, Edwards YH. Colon carbonic anhydrase 1: transactivation of gene expression by the homeodomain protein Cdx2. FEBS Lett. 1998; 423:218–222.
crossref
55. Bai YQ, Miyake S, Iwai T, Yuasa Y. CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene. Oncogene. 2003; 22:7942–7949.
crossref
56. Bai YQ, Yamamoto H, Akiyama Y, Tanaka H, Takizawa T, Koike M, Kenji Yagi O, Saitoh K, Takeshita K, Iwai T, Yuasa Y. Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach. Cancer Lett. 2002; 176:47–55.
crossref
57. Mutoh H, Sakurai S, Satoh K, Tamada K, Kita H, Osawa H, Tomiyama T, Sato Y, Yamamoto H, Isoda N, Yoshida T, Ido K, Sugano K. Development of gastric carcinoma from intestinal metaplasia in Cdx2-transgenic mice. Cancer Res. 2004; 64:7740–7747.
crossref
58. Song JH, Kim CJ, Cho YG, Chae JS, Cao Z, Nam SW, Lee JY, Park WS. Genetic alterations of the Cdx2 gene in gastric cancer. APMIS. 2008; 116:74–80.
crossref
59. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007; 8:275–283.
crossref
60. Tajima Y, Yamazaki K, Makino R, Nishino N, Aoki S, Kato M, Morohara K, Kaetsu T, Kusano M. Gastric and intestinal phenotypic marker expression in early differentiated-type tumors of the stomach: clinicopathologic significance and genetic background. Clin Cancer Res. 2006; 12:6469–6479.
crossref
61. Hollstein M, Shomer B, Greenblatt M, Soussi T, Hovig E, Montesano R, Harris CC. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 1996; 24:141–146.
crossref
62. Uchino S, Noguchi M, Ochiai A, Saito T, Kobayashi M, Hiro-hashi S. p53 mutation in gastric cancer: a genetic model for carcinogenesis is common to gastric and colorectal cancer. Int J Cancer. 1993; 54:759–764.
crossref
63. Maesawa C, Tamura G, Suzuki Y, Ogasawara S, Sakata K, Kashiwaba M, Satodate R. The sequential accumulation of genetic alterations characteristic of the colorectal adenoma-carcinoma sequence does not occur between gastric adenoma and adenocarcinoma. J Pathol. 1995; 176:249–258.
crossref
64. Tamura G, Sato K, Akiyama S, Tsuchiya T, Endoh Y, Usuba O, Kimura W, Nishizuka S, Motoyama T. Molecular characterization of undifferentiated-type gastric carcinoma. Lab Invest. 2001; 81:593–598.
crossref
65. Correa P, Shiao Y. Phenotypic and genotypic events in gastric carcinogenesis. Cancer Res. 1994; 54:1914s–1943s.
66. Tohdo H, Yokozaki H, Haruma K, Kajuyama G, Tahara E. p53 gene mutations in gastric adenomas. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993; 63:191–195.
crossref
67. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis a look outside the nucleus. Science. 2000; 287:1606–1609.
68. Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007; 17:45–51.
crossref
69. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996; 87:159–170.
crossref
70. Nagase H, Nakamura Y. Mutation of the APC (adenomatous polyposis coli) gene. Hum Mutat. 1993; 2:425–434.
71. Tamura G, Maesawa C, Suzuki Y, Tamada H, Satoh M, Ogasawara S, Kashiwaba M, Satodate R. Mutations of the APC gene occur during early stages of gastric adenoma development. Cancer Res. 1994; 54:1149–1151.
72. Rocco A, Caruso R, Toracchio S, Rigoli L, Verginelli F, Catalano T, Neri M, Curia MC, Ottini L, Agnese V, Bazan V, Russo A, Pantuso G, Colucci G, Mariani-Costantini R, Nardone G. Gastric adenomas: relationship between clinicopathological findings, Helicobacter pylori infection, APC mutations and COX-2 expression. Ann Oncol. 2006; S7:vii103–108.
crossref
73. Powell SM, Cummings OW, Mullen JA, Asghar A, Fuga G, Piva P, Minacci C, Megha T, Tosi P, Jackson CE. Characterization of the APC gene in sporadic gastric adenocarcinomas. Oncogene. 1996; 12:1953–1959.
74. Cho YG, Kim CJ, Park CH, Kim YS, Kim SY, Nam SW, Lee SH, Yoo NJ, Lee JY, Park WS. Loss of heterozygosity and microsatellite instability at multiple tumor suppressor genes in gastric carcinoma. J Korean Gastric Cancer Assoc. 2003; 3:214–220.
75. Park WS, Oh RR, Park JY, Kim PJ, Shin MS, Lee JH, Kim HS, Lee SH, Kim SY, Park YG, An WG, Kim HS, Jang JJ, Yoo NJ, Lee JY. Frequent somatic mutations of the ? -catenin gene in intestinal-type gastric cancer. Cancer Res. 1999; 59:4257–4260.
76. Ebert MP, Fei G, Kahmann S, Müller O, Yu J, Sung JJ, Malfertheiner P. Increased beta-catenin mRNA levels and mutational alterations of the APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis. 2002; 23:87–91.
crossref
77. Candidus S, Bischoff P, Becker KF, Höfler H. No evidence for mutations in the alpha-and beta-catenin genes in human gastric and breast carcinomas. Cancer Res. 1996; 56:49–52.
78. Ramesh S, Nash J, McCulloch PG. Reduction in membranous expression of beta-catenin and increased cytoplasmic E-cadherin expression predict poor survival in gastric cancer. Br J Cancer. 1999; 81:1392–1397.
79. Abraham SC, Park SJ, Lee JH, Mugartegui L, Wu TT. Genetic alterations in gastric adenomas of intestinal and foveolar phenotypes. Mod Pathol. 2003; 16:786–795.
crossref
80. Kim CJ, Cho YG, Park CH, Jeong SW, Nam SW, Kim SY, Lee SH, Yoo NJ, Lee JY, Park WS. Inactivating mutations of the Siah-1 gene in gastric cancer. Oncogene. 2004; 23:8591–8596.
crossref
81. Kim CJ, Song JH, Cho YG, Kim YS, Kim SY, Nam SW, Yoo NJ, Lee JY, Park WS. Somatic mutations of the beta-TRCP gene in gastric cancer. APMIS. 2007; 115:127–133.
82. Kim CJ, Song JH, Cho YG, Chae HS, Nam SW, Yoo NJ, Lee JY, Park WS. Pin1 gene mutation is a rare event in gastric cancer. APMIS. 2006; 114:518–522.
crossref
83. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 2003; 129:199–221.
crossref
84. Aaltonen LA, Peltomaki P, Leach F, Sistonen P, Pylkkanen L, Mecklin J-P, Jarvinen H, Powell S, Jen J, Hamilton SR, Peterson GM, Kinzler KW, Vogelstein B, de la Chapelle A. Clues to the pathogenesis of familial colorectal cancer. Science. 1993; 260:812–816.
crossref
85. Akiyama Y, Nakasaki H, Nihei Z, Iwama T, Nomizu T, Utsunomiya J, Yuasa Y. Frequent microsatellite instabilities and analyses of the related genes in familial gastric cancers. Jpn J Cancer Res. 1996; 87:595–601.
crossref
86. Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Rhyu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res. 1999; 59:1090–1095.
87. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998; 58:5248–5257.
88. Iacopetta BJ, Soong R, House AK, Hamelin R. Gastric carcinomas with microsatellite instability: clinical features and mutations to the TGF-beta type II receptor, IGFII receptor, and BAX genes. J Pathol. 1999; 187:428–432.
89. Ottini L, Falchetti M, Lupi R, Rizzolo P, Agnese V, Colucci G, Bazan V, Russo A. Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Ann Oncol. 2006; S7:vii97–102.
crossref
90. Kim JJ, Baek MJ, Kim L, Kim NG, Lee YC, Song SY, Noh SH, Kim H. Accumulated frameshift mutations at coding nucleotide repeats during the progression of gastric carcinoma with microsatellite instability. Lab Invest. 1999; 79:1113–1120.
91. Yamamoto H, Imai K, Perucho M. Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J Gastroenterol. 2002; 37:153–163.
crossref
92. Lee JH, Abraham SC, Kim HS, Nam JH, Choi C, Lee MC, Park CS, Juhng SW, Rashid A, Hamilton SR, Wu TT. Inverse relationship between APC gene mutation in gastric adenomas and development of adenocarcinoma. Am J Pathol. 2002; 161:611–618.
crossref
93. Kashiwagi K, Watanabe M, Ezaki T, Kanai T, Ishii H, Mukai M, Hibi T. Clinical usefulness of microsatellite instability for the prediction of gastric adenoma or adenocarcinoma in patients with chronic gastritis. Br J Cancer. 2000; 82:1814–1818.
crossref
94. Nakamura K, Sakaguchi H, Enjoji M. Depressed adenoma of the stomach. Cancer. 1998; 62:2197–2202.
crossref
95. Tamura G. Molecular pathogenesis of adenoma and differentiated adenocarcinoma of the stomach. Pathol Int. 1996; 46:834–841.
crossref
96. Lorenzo HK, Susin SA. Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist Updates. 2007; 10:235–255.
crossref
97. Guo B, Godzik A, Reed JC. Bcl-G, a novel proapoptotic member of the Bcl-2 family. J Biol Chem. 2001; 276:2780–2785.
crossref
98. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res. 2000; 256:50–57.
crossref
99. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalen-ko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol. 1999; 17:331–367.
crossref
100. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet. 1999; 33:29–55.
crossref
101. Peter ME, Krammer PH. The CD95 (APO-1/Fas) DISC and beyond. Cell Death Differ. 2003; 10:26–35.
102. Chen G, Sordillo EM, Ramey WG, Reidy J, Holt PR, Krajewski S, Reed JC, Blaser MJ, Moss SF. Apoptosis in gastric epithelial cells is induced by Helicobacter pylori and accompanied by increased expression of BAK. Biochem Biophys Res Commun. 1997; 239:626–632.
103. Yanai A, Hirata Y, Mitsuno Y, Maeda S, Shibata W, Akanuma M, Yoshida H, Kawabe T, Omata M. Helicobacter pylori induces antiapoptosis through nuclear factor-kappaB activation. J Infect Dis. 2003; 188:1741–1751.
104. Sun A, Noriki S, Imamura Y, Fukuda M. Detection of cancer clones in human gastric adenoma by increased DNA-instability and other biomarkers. Eur J Histochem. 2003; 47:111–122.
crossref
105. Osaki M, Kase S, Kodani I, Watanabe M, Adachi H, Ito H. Expression of Fas and Fas ligand in human gastric adenomas and intestinal-type carcinomas: correlation with proliferation and apoptosis. Gastric Cancer. 2001; 4:198–205.
crossref
106. Lim SC. Fas-related apoptosis in gastric adenocarcinoma. Oncol Rep. 2003; 10:57–63.
crossref
107. Park WS, Oh RR, Kim YS, Park JY, Lee SH, Shin MS, Kim SY, Kim PJ, Lee HK, Yoo NY, Lee JY. Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J Pathol. 2001; 193:162–168.
108. Park WS, Cho YG, Kim CJ, Park CH, Kim YS, Kim SY, Nam SW, Lee SH, Yoo NJ, Lee JY. Functional defect of the Fas mutants detected in gastric cancers. J Korean Gastric Cancer Assoc. 2003; 3:186–190.
crossref
109. Park WS, Lee JH, Shin MS, Park JY, Kim HS, Kim YS, Park CH, Lee SK, Lee SH, Lee SN, Kim H, Yoo NJ, Lee JY. Inactivating mutations of KILLER/DR5 gene in gastric cancers. Gastroenterology. 2001; 121:1219–1225.
crossref
110. Lee JH, Soung YH, Lee JW, Park WS, Kim SY, Cho YG, Kim CJ, Seo SH, Kim HS, Nam SW, Yoo NJ, Lee SH, Lee JY. Inactivating mutation of the proapoptotic gene BID in gastric cancer. J Pathol. 2004; 202:439–445.
111. Park WS, Lee JH, Shin MS, Park JY, Kim HS, Lee JH, Kim YS, Lee SN, Xiao W, Park CH, Lee SH, Yoo NJ, Lee JY. Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene. 2002; 21:2919–2925.
crossref
112. Soung YH, Lee JW, Kim SY, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH. Mutational analysis of proapoptotic caspase-9 gene in common human carcinomas. APMIS. 2006; 114:292–297.
crossref
113. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194:23–28.
crossref
114. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61:759–767.
crossref
115. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR. Mutations in APC, Kirsten-ras, and p53-alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci USA. 2002; 99:9433–9438.
crossref
TOOLS
Similar articles