Journal List > Korean J Community Nutr > v.22(6) > 1038605

Yoo, Kim, and Son: Risk of Metabolic Syndrome according to Intakes of Vegetables and Kimchi in Korean Adults: Using the 5th Korea National Health and Nutrition Examination Survey, 2010–2011

Abstract

Objectives

The objective of this study was to examine the relations between total vegetable and Kimchi intakes and the risk of metabolic syndrome (Mets) in Korean adults.

Methods

This study used dietary intake and health data of 6668 subjects aged 20 years and over from the 2010–2011 Korea National Health and Nutrition Examination Survey (KNHANES). Daily intakes of total vegetables and Kimchi were assessed by 24-hour recall data. The odds ratio of Mets risk according to daily intake of vegetables and Kimchi was analyzed, respectively.

Results

The highest consumption of total vegetables was associated with a lower risk of abdominal obesity (multivariable adjusted OR=0.56, 95% CI: 0.33, 0.93) in men and lower risk of Mets (multivariable adjusted OR=0.67, 95% CI: 0.47, 0.94) in women. Kimchi consumption was not related to the risk of Mets in both men and in women. However, a higher intake of Kimchi was associated with an increased risk of elevated blood pressure (Q1 vs Q5, multivariable adjusted OR=1.34, 95% CI: 0.95, 1.90, P for trend= 0.0261) in women.

Conclusions

A higher intake of vegetables was associated with decreased risk of abdominal obesity and Mets in both men and women, respectively. A higher consumption of Kimchi was not related to the risk of Mets in both in men and in women. However, a higher intake of Kimchi was associated with an increased risk of elevated blood pressure in women.

References

1. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult treatment panel III) final report. Circulation. 2002; 106(25):3143–3421.
2. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001; 24(4):683–689.
crossref
3. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin resistance syndrome (syndrome X). Diabetes. 1992; 41(6):715–722.
4. Han JH, Park HS, Shin CI, Chang HM, Yun KE, Cho SH, et al. Metabolic syndrome and quality of life (QOL) using generalised and obesity?specific QOL scales. Int J Clin Pract. 2009; 63(5):735–741.
crossref
5. Lim S, Shin H, Song JH, Kwak SH, Kang SM, Yoon JW, et al. Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and Nutrition Examination Survey for 1998–2007. Diabetes Care. 2011; 34(6):1323–1328.
6. Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, et al. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr. 2002; 76(1):93–99.
crossref
7. Bazzano LA, Serdula MK, Liu S. Dietary intake of fruit and vegetable and risk of cardiovascular disease. Curr Atheroscler Rep. 2003; 5(6):492–499.
8. Park S, Ham JO, Lee BK. Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition. 2015; 31(1):111–118.
crossref
9. Bian S, Gao Y, Zhang M, Wang X, Liu W, Zhang D, et al. Dietary nutrient intake and metabolic syndrome risk in Chinese adults: a case?control study. Nutr J. 2013; 12(1):106–122.
crossref
10. Li Y, Guo H, Wu M, Liu M. Serum and dietary antioxidant status is associated with lower prevalence of the metabolic syndrome in a study in Shanghai, China. Asia Pac J Clin Nutr. 2013; 22(1):60–68.
11. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr. 2006; 84(6):1489–1497.
crossref
12. Agudo A, Cabrera L, Amiano P, Ardanaz E, Barricarte A, Berenguer T et al Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am J Clin Nutr. 2007; 85(6):1634–1642.
13. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANESV-3). Cheongju: Korea Centers for Disease Control and Prevention;2013.
14. Son SM, Park Y, Lim H, Kim S, Jeong Y. Sodium intakes of Korean adults with 24-hour urine analysis and dish frequency questionnaire and comparison of sodium intakes according to the regional area and dish group. Korean J Community Nutr. 2007; 12(5):545–558.
15. Kwon JH, Shim JE, Park MK, Paik HY. Evaluation of fruits and vegetables intake for prevention of chronic disease in Korean adults aged 30 years and over: using the third Korea National Health and Nutrition Examination Survey (KNHANES III), 2005. Korean J Nutr. 2009; 42(2):146–157.
crossref
16. Lee JS, Heo GY, Lee JW, OH YJ, Park JA, Park YH, et al. Analysis of Kimchi microflora using denaturing gradient gel electrophoresis. In J Food Microbiol. 2005; 102(2):143–150.
crossref
17. Kim EK, An SY, Lee MS, Kim TH, Lee HK, Hwang WS, et al. Fermented Kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr Res. 2011; 31(6):436–443.
crossref
18. Choi SH, Kim HJ, Kwon MJ, Baeck YH, Song YO. The effect of Kimchi pill supplementation on plasma lipid concentration in healthy people. J Korean Soc Food Sci Nutr. 2001; 30(5):913–920.
19. Lee SM, Cho Y, Chung HK, Shin DH, Ha WK, Lee SC, et al. Effects of Kimchi supplementation on blood pressure and cardiac hypertrophy with varying sodium content in spontaneously hypertensive rats. Nutr Res Pract. 2012; 6(4):315–321.
crossref
20. Kim MK, Kim K, Shin MH, Shin DH, Lee YH, Chun BY, et al. The relationship of dietary sodium, potassium, fruits, and vegetables intake with blood pressure among Korean adults aged 40 and elder. Nutr Res Pract. 2014; 8(4):453–462.
21. Ford ES, Mokdad AH, Giles WH, Brown DW. The metabolic syndrome and antioxidant concentrations: findings from the third National Health and Nutrition Examination Survey. Diabetes. 2003; 52(9):2346–2352.
22. Navia B, Aparicio A, Perea JM, Perez-Farinos N, Villar-Villalba C, Labrado E, et al. Sodium intake may promote weight gain; results of the FANPE study in a representative sample of the adult Spanish population. Nutr Hosp. 2014; 29(6):1283–1289.
23. Cocores JA, Gold MS. The salted food addiction hypothesis may explain overeating and the obesity epidemic. Med Hypotheses. 2009; 73(6):892–899.
crossref
24. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care. 2004; 27(2):538–546.
crossref
25. Hosseinpour-Niazi S, Mirmiran P, Sohrab G, Hosseini-Esfahani F, Azizi F. Inverse association between fruit, legume, and cereal fiber and the risk of metabolic syndrome: Tehran Lipid and Glucose Study. Diabetes Res Clin Pract. 2011; 94(2):276–283.
crossref
26. Hosseinpour-Niazi S, Mirmiran P, Mirzaei S, Azizi F. Cereal, fruit and vegetable fibre intake and the risk of the metabolic syndrome: a prospective study in the Tehran Lipid and Glucose Study. J Hum Nutr Diet. 2015; 28(3):236–245.
crossref
27. Hermsdorff HHM, Zulet MA, PuchauB , Martinez JA. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study. Nutr Metab(Lond). 2010; 7(1):42–52.
crossref
28. Oh HY, Kim MK, Lee M, Kim YO. Macronutrient composition and sodium intake of diet are associated with risk of metabolic syndrome and hypertension in Korean women. PLoS ONE. 2013; 8(10):e78088.
crossref
29. Misra A, Khurana L, Isharwal S, Bhardwaj S. South Asian diets and insulin resistance. Br J Nutr. 2009; 101(4):465–473.
crossref
30. Son SM, Huh GY. Dietary risk factors associated with hypertension in patients. Korean J Community Nutr. 2006; 11(5):661–672.
31. Kang M, Joung H, Lim JH, Lee YS, Song YJ. Secular trend in dietary patterns in a Korean adult population, using the 1998, 2001, and 2005 Korean National Health and Nutrition Examination Survey. Korean J Nutr. 2011; 44(2):152–161.
crossref
32. Miura K, Okuda N, Turin TC, Takashima N, Nakagawa H, Nakamura K, et al. Dietary salt intake and blood pressure in a representative Japanese population: baseline analyses of NIPPON DATA80. J Epidemiol. 2010; 20(S3):S524–S530.
crossref
33. Ishibashi K, Oshima T, Matsuura H, Watanabe M, Ishida M, Ishida T, et al. Effects of age and sex on sodium chloride sensitivity: association with plasma renin activity. Clin Nephrol. 1994; 42(6):376–380.

Table 1.
General characteristics of Korean adults according to quintiles of total vegetable intake
  Men (n=2628) P1) Women (n=4040) P1)
Quintiles of total vegetable intake Quintiles of total vegetable intake
Q1 Q3 Q5 Q1 Q3 Q5
N 525 526   525 808 808 808  
Total vegetable intake (g/day) 132.2 ± 3.4 341.7 ± 1.4 741.4 ± 10.7 <0.0001 86.5 ± 1.7 251.7 ± 1.1 617.0 ± 8.4 <0.0001
Kimchi intake (g/day) 49.2 ± 2.9 136.9 ± 4.6 270.1 ± 59.8 <0.0001 30.7 ± 1.6 101.6 ± 2.9 190.8 ± 6.6 <0.0001
Age (years) 38.0 ± 0.8 41.4 ± 0.6 41.9 ± 50.6 <0.0001 39.2 ± 0.6 40.8 ± 0.5 43.3 ± 0.5 <0.0001
Household income status
High (%)2) 24.3 29.2 32.3 0.0208 25.1 26.8 33.6 0.0156
Education
College or higher(%) 37.5 40.9 45.1 0.2183 37.8 38.1 36.5 0.4827
Regular exercise
Yes (%)3) 41.8 44.7 46.3 0.2741 38.6 36.3 37.8 0.9051
Smoking status
Current smoker (%) 49.3 47.0 46.8 0.9344 8.1 7.6 4.1 0.1248
Monthly alcohol consumption
≥1 cup (%) 77.4 79.9 79.9 0.6850 46.0 47.7 43.3 0.7475
Frequency of eating out
≥1/day (%) 39.4 44.8 43.4 0.4231 18.0 16.6 14.6 0.7442
Frequency of fast food intake
≥1/week (%) 3.3 2.7 3.3 0.9787 2.4 0.9 1.5 0.0167

Values are expressed as mean ± SE for continuous variables and percentage for categorical variables.

Q1, Q3, Q5 are the lowest, middle, and highest quintiles, respectively

1) P value is P for trend determined by GLM for continuous variables and P for difference by Chi-square test for categorical variables.

2) High was defined as Quatile 4 evaluated with monthly household income.

3) Regular exercise was defined as walking at least 30 minutes a day, more than 5 times per week.

Table 2.
General characteristics of Korean adults participants according to quintiles of Kimchi intake
  Men (n=2628) P1) Women (n=4040) P1)
Quintiles of Kimchi intake Quintiles of Kimchi intake
Q1 Q3 Q5 Q1 Q3 Q5
N 525 526 524   808 805 808  
Kimchi intake (g/day) 18.0 ± 0.9 118.9 ± 0.8 344.4 ± 56.3 <0.0001 7.0 ± 0.4 75.1 ± 0.5 260.5 ± 4.0 <0.0001
Total vegetable intake(g/day y) 247.5 ± 8.7 352.4 ± 8.4 576.1 ± 10.8 <0.0001 201.9 ± 8.9 260.3 ± 9.0 444.9 ± 8.4 <0.0001
Age (years) 37.6 ± 0.7 40.7 ± 0.6 43.7 ± 50.6 <0.0001 38.8 ± 0.6 39.8 ± 0.5 43.1 ± 0.6 <0.0001
Household income status
High (%)2) 27.3 24.1 25.8 0.4225 32.6 30.8 26.4 0.0942
Education
College or higher (%) 42.7 40.6 41.7 0.9790 40.2 42.7 33.0 0.0238
Regular exercise
Yes (%)3) 47.9 41.9 44.8 0.0620 35.2 39.3 36.2 0.3402
Smoking status
Current smoker (%) 48.2 48.6 50.2 0.5757 8.3 8.3 5.2 0.1896
Monthly alcohol consumption
≥1 cup (%) 79.4 79.0 76.0 0.7898 46.7 47.0 41.9 0.3518
Frequency of eating out
≥1/day (%) 41.5 48.7 37.3 0.0344 18.5 19.1 11.8 0.0092
Frequency of fast food intake
≥1/week (%) 4.4 1.9 3.3 0.5477 3.4 1.7 0.8 0.0089

Values are expressed as mean°æSE for continuous variables and percentage for categorical variables. Q1, Q3, Q5 are the lowest, middle, and highest quintiles, respectively. 1) P value is P for trend determined by GLM for continuous variables and P for difference by Chi-square test for categorical variables. 2) High was defined as Quatile 4 evaluated with monthly household income. 3) Regular exercise was defined as walking at least 30 minutes a day, more than 5 times per week.

Table 3.
Energy and energy adjusted nutrient intake according to quintiles of total vegetable intake in Korean adults
  Men (n=2628) P for trend1) Women (n=4040) P for trend1)
Quintiles of total vegetable intake Quintiles of total vegetable intake
Q1 Q3 Q5 Q1 Q3 Q5
N 525 526 525   808 808 808  
Nutrient intake
Energy (kcal/day) 1,998.2±532.53) 2,374.8±345.3 2,894.9±536.8 <0.0001 1,442.6± 519.9 1,731.5±519.3 2,160.1±524.5 <0.0001
Carbohydrate (g) 340.5±554.93) 370.4±554.4 377.9±555.4 <0.0001 283.8± 552.5 293.0±552.7 298.4±553.3 0.0019
Protein (g) 86.4±551.93) 88.5±551.3 94.1±551.8 0.0698 59.8±550.8 64.7±550.8 68.9±551.0 <0.0001
Fat (g) 57.3± 551.43) 51.8± 551.4 50.8±551.4 0.0139 42.1±550.9 37.1±550.9 37.0± 551.1 <0.0001
Calcium (mg) 485.7± 517.53) 565.5±513.1 767.7± 521.4 <0.0001 405.8±510.7 462.3±559.2 613.6±513.2 <0.0001
Iron (mg) 13.4±550.43) 17.5±550.5 22.7±550.7 <0.0001 10.8±550.3 12.9±550.3 18.2±550.8 <0.0001
Sodium (mg) 4,277.7±100.03) 5,837.4±108.6 8,527.5±201.6 <0.0001 3,196.9±561.1 4,302.7±583.5 6,200.2±161.6 <0.0001
Potassium (mg) 2,824.1±554.43) 3,449.3±545.5 4,491.6±562.1 <0.0001 2,265.2±547.1 2761.3± 534.1 3,725.9±560.5 <0.0001
Sodium/Potassium 1.6±550.03) 1.8±550.0 2.0±550.0 <0.0001 1.6± 550.0 1.7±550.0 1.7±550.0 <0.0001
Potassium/Sodium 0.8±550.03) 0.7±550.0 0.6±550.0 <0.0001 0.9±550.0 0.7±550.0 0.8± 550.0 <0.0001
VitaminA (μgRE) 770.4± 591.33) 981.4±548.5 1319.6±549.2 <0.0001 548.0±526.6 700.5±524.2 1,293.9±546.7 <0.0001
Carotine (μg) 3,543.1±534.13) 4,974.8±264.7 7,205.8±274.1 <0.0001 2,431.8±141.5 3,493.5±134.6 7,058.0±276.2 <0.0001
Retinol (μg) 188.4± 514.73) 204.5±558.9 97.2± 513.2 <0.0001 115.7± 555.0 108.2± 512.0 97.6± 559.1 0.0586
Thiamine (mg) 1.5±550.03) 1.6± 550.0 1.8±550.0 <0.0001 1.1±550.0 1.2± 550.0 1.4± 550.0 <0.0001
Riboflavin (mg) 1.5±550.03) 1.5±550.0 1.7± 550.0 0.0002 1.1±550.0 1.1±550.0 1.3±550.0 <0.0001
Niacin (mg) 19.6±550.43) 20.9±550.3 23.1±550.5 <0.0001 13.3±550.2 14.9± 550.2 17.2±550.3 <0.0001
VitaminC (mg) 81.8±554.13) 112.7±554.0 170.1±554.7 <0.0001 78.5±553.8 106.0±554.4 155.3± 554.6 <0.0001

Values are presented as mean ± SE. Q1, Q3, Q5 are the lowest, middle, and highest quintiles, respectively. 1) P for trend from GLM unadjusted for energy intake and adjusted for energy for other nutrients.

Table 4.
Energy and energy adjutsetd nutrient intake according to quintiles of Kimchi intake in Korean adults.
Men (n=2628) P for trend1) Women (n=4040) P for trend1)
Quintiles of Kimchi intake Quintiles of Kimchi intake
Q1 Q3 Q5 Q1 Q3 Q5
N 525 526 524   808 805 808  
Nutrient intake
Energy (kcal/day) 2,304.8 ± 36.3 2,369.1 ± 35.9 2,610.5 ± 36.3 <0.0001 1,633.1 ± 22.9 1,755.5 ± 22.4 1,910.3 ± 22.1 <0.0001
Carbohydrate (g) 341.0 ± 5.5 357.6 ± 4.2 383.4 ± 4.7 <0.0001 278.8 ± 3.0 289.1 ± 2.2 302.3 ± 2.4 <0.0001
Protein (g) 89.2 ± 1.8 91.4 ± 2.2 88.3 ± 1.3 0.6300 64.1 ± 0.8 64.5 ± 0.8 65.6 ± 0.9 0.0342
Fat (g) 58.3 ± 1.4 52.9 ± 1.3 48.1 ± 1.2 <0.0001 41.9 ± 0.9 39.4 ± 0.8 35.2 ± 0.8 <0.0001
Calcium (mg) 535.1 ± 18.5 569.5 ± 15.0 670.0 ± 18.1 <0.0001 449.1 ± 10.7 481.0 ± 13.2 540.3 ± 10.9 <0.0001
Iron (mg) 15.4 ± 0.5 18.2 ± 0.6 20.0 ± 0.8 <0.0001 12.6 ± 0.3 13.4 ± 0.3 15.4 ± 0.7 0.0004
Sodium (mg) 4,687.5 ± 135.8 6,042.9 ± 117.1 8,388.1 ± 189.8 <0.0001 3,377.3 ± 73.5 4,023.1 ± 83.0 6,296.1 ± 117.9 <0.0001
Potassium (mg) 3,100.3 ± 52.8 3,472.0 ± 55.1 3,958.7 ± 56.1 <0.0001 2,605.8 ± 51.9 2,772.9 ± 43.8 3,261.7 ± 54.1 <0.0001
Sodium/ Potassium 1.6 ± 0.0 1.8 ± 0.0 2.2 ± 0.0 <0.0001 1.4 ± 0.0 1.6 ± 0.0 2.0 ± 0.0 <0.0001
Potassium/ Sodium 0.8 ± 0.0 0.6 ± 0.0 0.5 ± 0.0 <0.0001 1.0 ± 0.0 0.8 ± 0.0 0.6 ± 0.0 <0.0001
Vitamin A (µgRE) 901.5 ± 62.7 971.0 ± 83.2 1,045.5 ± 46.0 0.1650 704.7 ± 33.5 776.3 ± 27.4 899.3 ± 32.5 0.0016
Carotine (µg) 4,349.2 ± 356.3 4,972.7 ± 490.6 5,557.1 ± 244.2 0.0066 3,377.9 ± 182.1 3,836.4 ± 151.2 4,740.9 ± 193.7 <0.0001
Retinol (µg) 184.8 ± 19.7 188.8 ± 57.0 104.6 ± 14.1 0.0144 116.1 ± 8.7 128.7 ± 14.3 91.1 ± 6.3 0.0035
Thiamine (mg) 1.5 ± 0.0 1.6 ± 0.0 1.7 ± 0.0 0.0026 1.1 ± 0.0 1.2 ± 0.0 1.3 ± 0.0 <0.0001
Riboflavin (mg) 1.5 ± 0.1 1.5 ± 0.0 1.5 ± 0.0 0.9826 1.1 ± 0.0 1.2 ± 0.0 1.2 ± 0.0 0.0119
Niacin (mg) 20.4 ± 0.4 20.8 ± 0.4 21.4 ± 0.4 0.2541 14.8 ± 0.2 15.2 ± 0.2 15.7 ± 0.3 0.0470
VitaminC (mg) 92.2 ± 3.5 105.0 ± 3.3 142.1 ± 4.2 <0.0001 95.2 ± 4.2 102.9 ± 3.5 132.3 ± 4.4 <0.0001

Values are presented as mean ± SE. Q1, Q3, Q5 are the lowest, middle, and highest quintiles, respectively. 1) P for trend from GLM unadjusted for energy intake and adjusted for energy intake for other nutrients.

Table 5.
Parameters according to quintiles of total vegetable intake in Korean adults
  Men (n=2628) P for trend1) Women (n=4040) P for trend1)
Quintiles of total vegetable intake Quintiles of total vegetable intake
Q1 Q3 Q5 Q1 Q3 Q5
N 525 526 525   808 808 808  
Parameters
Body mass index 23.3 ± 0.2 23.9 ± 0.2 24.2 ± 0.2 0.0025 22.5 ± 0.2 23.0 ± 0.1 23.1 ± 0.1 0.1251
Waist circumference (cm) 83.3 ± 0.2 83.6 ± 0.2 82.5 ± 0.3 0.0026 76.4 ± 0.2 76.6 ± 0.2 76.3 ± 0.2 0.0212
Systolic blood pressure (mmHg) 120.3 ± 0.7 119.2 ± 0.7 119.5 ± 0.7 0.2344 113.4 ± 0.5 112.4 ± 0.5 112.3 ± 0.6 0.2981
Diastolic blood pressure (mmHg) 79.3 ± 0.5 79.1 ± 0.5 79.7 ± 0.5 0.0110 72.7 ± 0.4 72.8 ± 0.4 73.3 ± 0.4 0.0933
Fasting plasma glucose (mg/dl) 96.7 ± 0.9 95.4 ± 0.6 95.8 ± 1.4 0.1817 90.9 ± 0.4 90.6 ± 0.3 91.6 ± 0.6 0.1024
Triglyceride (mg/dl) 150.8 ± 4.8 153.4 ± 5.6 146.4 ± 7.2 0.0497 104.5 ± 2.8 100.3 ± 2.5 100.1 ± 2.8 0.9750
HDL-cholesterol (mg/dl) 50.9 ± 0.6 51.1 ± 0.6 49.6 ± 0.6 0.3594 56.9 ± 0.5 56.2 ± 0.4 56.9 ± 0.5 0.2779

Values are presented as mean ± SE. Q1, Q3, Q5 are the lowest, middle, and highest quintiles, respectively. 1) P for trend from GLM.

Table 6.
Parameters according to quintiles of Kimchi intake in Korean adults.
  Men (n=2628) P for trend1) Women (n=4040) P for trend1)
Quintiles of Kimchi intake Quintiles of Kimchi intake
Q1 Q3 Q5 Q1 Q3 Q5
N 525 526 524   808 805 808  
Parameters
Body mass index 23.4 ± 0.24) 23.5 ± 0.2 24.0 ± 0.2 0.0358 22.5 ± 0.1 22.8 ± 0.1 22.9 ± 0.2 0.0010
Waist circumference (cm) 83.5 ± 0.2 83.3 ± 0.2 82.8 ± 0.3 0.0000 76.3 ± 0.2 76.3 ± 0.2 76.1 ± 0.2 0.0002
Systolic blood pressure (mmHg) 119.7 ± 0.7 119.4 ± 0.7 120.6 ± 0.8 0.0145 113.0 ± 0.5 113.9 ± 0.6 112.5 ± 0.6 0.0241
Diastolic blood pressure (mmHg) 78.7 ± 0.6 79.9 ± 0.5 79.6 ± 0.6 0.0234 72.5 ± 0.4 73.6 ± 0.4 73.6 ± 0.4 0.0039
Fasting plasma glucose (mg/dl) 95.1 ± 0.8 96.3 ± 0.8 95.2 ± 1.2 0.1257 90.4 ± 0.4 90.9 ± 0.4 91.3 ± 0.5 0.0122
Triglyceride (mg/dl) 141.4 ± 4.2 162.5 ± 6.7 152.5 ± 6.5 0.0012 100.5 ± 2.3 100.2 ± 2.4 103.4 ± 2.4 0.1294
HDL-cholesterol (mg/dl) 50.6 ± 0.6 49.3 ± 0.5 50.6 ± 0.5 0.3732 57.2 ± 0.5 57.4 ± 0.5 56.7 ± 0.5 0.1905

Values are presented as mean ± SE Q1, Q3, Q5 are the lowest, middle, and highest quintiles, respectively. 1) P for trend from GLM.

Table 7.
The odds ratios and 95% confidence intervals for metabolic syndrome and its components according to quintiles of total vegetable intake in Korea adults
Metabolic syndrome Men (n=2628) P for trend2) Women (n=4040) P for trend2)
Quintiles of total vegetable intake Quintiles of total vegetable intake
Q1 Q3 Q5 Q1 Q3 Q5
N 525 526 525   808 808 808  
Waist circ.>90 cm (men), >80 cm (women)
Unadjusted OR (95% CI) 1.00 1.33 (0.95, 1.88) 1.39 (0.96, 2.00) 0.0834 1.00 1.09 (0.87, 1.37) 1.14 (0.88, 1.50) 0.8010
Age-adjusted OR (95% CI) 1.00 1.30 (0.93, 1.83) 1.35 (0.94, 1.94) 0.1167 1.00 1.04 (0.82, 1.32) 0.98 (0.74, 1.30) 0.2679
Multivariable1) OR (95% CI) 1.00 0.85 (0.49, 1.44) 0.56 (0.33, 0.93) 0.0153 1.00 0.91 (0.61, 1.36) 0.81 (0.53, 1.25) 0.1843
SBP≥130 or DBP≥85 mmHg
Unadjusted OR (95% CI) 1.00 1.29 (0.95, 1.75) 1.32 (0.96, 1.82) 0.0667 1.00 1.01 (0.72, 1.41) 1.28 (0.93, 1.77) 0.0338
Age-adjusted OR (95% CI) 1.00 1.19 (0.87, 1.62) 1.21 (0.87, 1.68) 0.2359 1.00 1.01 (0.68, 1.49) 1.14 (0.79, 1.63) 0.3219
Multivariable1) OR (95% CI) 1.00 1.02 (0.73, 1.43) 0.96 (0.65, 1.40) 0.8671 1.00 0.96 (0.64, 1.42) 1.11 (0.72, 1.60) 0.3224
Fasting glucose ≥100 mg/dl
Unadjusted OR (95% CI) 1.00 1.14 (0.79, 1.63) 1.12 (0.77, 1.63) 0.1971 1.00 0.97 (0.67, 1.41) 1.27 (0.91, 1.78) 0.0840
Age-adjusted OR (95% CI) 1.00 1.02 (0.70, 1.49) 1.00 (0.68, 1.48) 0.5362 1.00 0.95 (0.65, 1.38) 1.15 (0.81, 1.62) 0.3169
Multivariable1) OR (95% CI) 1.00 0.85 (0.58, 1.24) 0.75 (0.49, 1.13) 0.4858 1.00 0.87 (0.59, 1.29) 1.09 (0.74, 1.62) 0.4015
HDL<40 mg/dl (men), <50 mg/dl (women)
Unadjusted OR (95% CI) 1.00 0.82 (0.54, 1.26) 1.21 (0.79, 1.86) 0.4100 1.00 1.16 (0.90, 1.49) 0.91 (0.71, 1.17) 0.3425
Age-adjusted OR (95% CI) 1.00 0.81 (0.53, 1.24) 1.19 (0.78, 1.82) 0.4617 1.00 1.13 (0.87, 1.46) 0.84 (0.66, 1.09) 0.1014
Multivariable1) OR (95% CI) 1.00 0.79 (0.51, 1.22) 1.25 (0.81, 1.94) 0.2850 1.00 1.15 (0.87, 1.51) 0.91 (0.68, 1.21) 0.4694
Triglycerides≥150 mg/dl
Unadjusted OR (95% CI) 1.00 1.22 (0.91, 1.64) 1.47 (1.10, 1.97) 0.0021 1.00 0.99 (0.71, 1.36) 0.76 (0.55, 1.06) 0.3607
Age-adjusted OR (95% CI) 1.00 1.17 (0.87, 1.56) 1.39 (1.04, 1.87) 0.0081 1.00 0.96 (0.68, 1.34) 0.67 (0.47, 0.94) 0.0575
Multivariable1) OR (95% CI) 1.00 1.00 (0.73, 1.37) 1.12 (0.80, 1.58) 0.2664 1.00 0.93 (0.66, 1.33) 0.71 (0.49, 1.03) 0.3039
Metabolic syndrome
Unadjusted OR (95% CI) 1.00 1.73 (1.18, 2.53) 1.74 (1.17, 2.57) 0.0008 1.00 0.87 (0.64, 1.18) 0.88 (0.61, 1.27) 0.8151
Age-adjusted OR (95% CI) 1.00 1.62 (1.11, 2.38) 1.62 (1.09, 2.40) 0.0032 1.00 0.84 (0.60, 1.18) 0.76 (0.81, 1.12) 0.2657
Multivariable1) OR (95% CI) 1.00 1.35 (0.86, 2.12) 1.18 (0.75, 1.85) 0.1273 1.00 0.70 (0.75, 1.04) 0.62 (0.40, 0.97) 0.1444

1) Adjustment for age, BMI, household income (>high), education (>college or higher), regular exercise (walking at least 30 minutes a day, more than 5 times) (yes/no), current smoking status (current smoker) (yes/no), monthly alcohol consumption (≥1 cups per month) (yes/no), eating out times (≥1 time/week) (yes/no), frequency of fast food intake (≥1 time/week) (yes/no), energy intake 2) P for trend from GLM

Table 8.
The odd ratios and 95% confidence intervals for metabolic syndrome and its components according to quintiles of Kimchi intake in Korea adults
Metabolic syndrome Men (n=2628) P for trend2) Women (n=4040) P for trend2)
Quintiles of Kimchi intake Quintiles of Kimchi intake
Q1 Q3 Q5 Q1 Q3 Q5
N
Waist circ.>90 cm (men), >80 cm (women)
Unadjusted OR (95% CI) 1.00 0.94 (0.65, 1.37) 1.12 (0.76, 1.63) 0.4838 1.00 1.33 (1.04, 1.71) 1.48 (1.15, 1.89) 0.0079
Age-adjusted OR (95% CI) 1.00 0.92 (0.63, 1.33) 1.07 (0.73, 1.55) 0.6427 1.00 1.34 (1.02, 1.75) 1.29 (0.99, 1.69) 0.1771
Multivariable1) OR (95% CI) 1.00 0.82 (0.50, 1.34) 0.53 (0.32, 0.89) 0.0233 1.00 1.33 (0.88, 2.01) 1.29 (0.87, 1.91) 0.3907
SBP≥130 or DBP≥85 mmHg
Unadjusted OR (95% CI) 1.00 1.18 (0.86, 1.63) 1.37 (0.98, 1.91) 0.0305 1.00 1.40 (0.99, 1.96) 1.59 (1.16, 2.19) 0.0004
Age-adjusted OR (95% CI) 1.00 1.10 (0.80, 1.52) 1.18 (0.84, 1.65) 0.1997 1.00 1.58 (1.08, 2.29) 1.14 (1.03, 2.02) 0.0113
Multivariable1) OR (95% CI) 1.00 1.06 (0.76, 1.47) 1.03 (0.72, 1.46) 0.6252 1.00 1.52 (1.03, 2.23) 1.34 (0.95, 1.90) 0.0261
Fasting glucose ≥100 mg/dl
Unadjusted OR (95% CI) 1.00 1.34 (0.96, 1.88) 1.23 (0.86, 1.76) 0.1382 1.00 1.13 (0.77, 1.64) 1.45 (1.00, 2.10) 0.0557
Age-adjusted OR (95% CI) 1.00 1.24 (0.87, 1.76) 1.01 (0.70. 1.45) 0.7293 1.00 1.14 (0.77, 1.66) 1.30 (0.89, 1.90) 0.2063
Multivariable1) OR (95% CI) 1.00 1.16 (0.80, 1.69) 0.85 (0.58, 1.23) 0.6100 1.00 1.06 (0.71, 1.58) 1.14 (0.76, 1.71) 0.5133
HDL<40 mg/dl (men), <50 mg/dl (women)
Unadjusted OR (95% CI) 1.00 0.97 (0.66, 1.42) 0.96 (0.65, 1.43) 0.4951 1.00 0.92 (0.72, 1.18) 1.08 (0.83, 1.39) 0.5068
Age-adjusted OR (95% CI) 1.00 0.95 (0.65, 1.40) 0.93 (0.63, 1.39) 0.3282 1.00 0.91 (0.70, 1.17) 1.00 (0.77, 1.30) 0.9432
Multivariable1) OR (95% CI) 1.00 0.95 (0.64, 1.41) 0.82 (0.55, 1.24) 0.1802 1.00 0.87 (0.67, 1.14) 0.94 (0.71, 1.26) 0.8812
Triglycerides≥150 mg/dl
Unadjusted OR (95% CI) 1.00 1.55 (1.17, 2.06) 1.58 (1.19, 2.09) 0.0012 1.00 0.92 (0.64, 1.33) 1.21 (0.88, 1.67) 0.1562
Age-adjusted OR (95% CI) 1.00 1.49 (1.12, 1.98) 1.45 (1.09, 1.93) 0.0093 1.00 0.92 (0.63, 1.34) 1.07 (0.77, 1.47) 0.5564
Multivariable1) OR (95% CI) 1.00 1.49 (1.11, 2.01) 1.22 (0.88, 1.68) 0.1886 1.00 0.88 (0.60, 1.29) 1.03 (0.74, 1.45) 0.5864
Metabolic syndrome
Unadjusted OR (95% CI) 1.00 1.27 (0.85, 1.88) 1.51 (1.01, 2.26) 0.0132 1.00 1.07 (0.72, 1.58) 1.41 (0.99, 1.99) 0.0698
Age-adjusted OR (95% CI) 1.00 1.20 (0.81, 1.79) 1.33 (0.89, 2.00) 0.0658 1.00 1.11 (0.73, 1.70) 1.25 (0.87, 1.81) 0.3590
Multivariable1) OR (95% CI) 1.00 1.07 (0.69, 1.66) 0.96 (0.62, 1.49) 0.7418 1.00 0.97 (0.59, 1.59) 0.99 (0.65, 1.51) 0.9649

1) Adjustment for age, BMI, household income (>high), education (>college or higher), regular exercise (walking at least 30 minutes a day, more than 5 times) (yes/no), current smoking status (current smoker) (yes/no), monthly alcohol consumption (≥1 cups per month) (yes/no), eating out times (≥1 time/week) (yes/no), frequency of fast food intake (≥1 time/week) (yes/no), energy intake 2) P for trend from GLM

TOOLS
Similar articles