Abstract
Background
Outbreaks of carbapenem resistant P. aeruginosa give rise to significant therapeutic challenges for treating nosocomial infections. In this study, we analyzed carbapenem resistance mechanisms in carbapenem resistant and clonally different P. aeruginosa strains. We analyzed chromosomal alterations in the genes of OprD and efflux system regulatory proteins (MexR, NalC, NalD, MexT, and MexZ). We also investigated chromosomal alterations in the quinolone resistance-determining region (QRDR) for quinolone resistance mechanisms.
Methods
Twenty-one clonally different P. aeruginosa strains were isolated by repetitive extragenic palindromic sequence-based PCR (rep-PCR). PCR and DNA sequencing were conducted for the detection of β-lactamase genes and chromosomal alterations of efflux pump regulatory genes, oprD, and QRDR in gyrA, gyrB, parC, and parE.
Results
Only one (P28) of the 21 strains harbored blaVIM-2. Two isolates had mutations in nalD or mexZ that were associated with efflux pump overexpression. Chromosomal alterations causing loss of OprD were found in 4 out of 21 carbapenem resistant P. aeruginosa strains. Nine of 10 imipenem and ciprofloxacin resistant strains had alterations in gyrA and/or parC.
REFERENCES
1. Jacoby GA and Medeiros AA. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991; 35:1697–704.
2. Lee K, Park KH, Jeong SH, Lim HS, Shin JH, Yong D, et al. Further increase of vancomycin-resistant Enterococcus faecium, amikacin- and fluoroquinolone-resistant Klebsiella pneumoniae, and imipenem-resistant Acinetobacter spp. in Korea: 2003 KONSAR surveillance. Yonsei Med J. 2006; 47:43–54.
3. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001; 47:247–50.
4. Edalucci E, Spinelli R, Dolzani L, Riccio ML, Dubois V, Tonin EA, et al. Acquisition of different carbapenem resistance mechanisms by an epidemic clonal lineage of Pseudomonas aeruginosa. Clin Microbiol Infect. 2008; 14:88–90.
5. Pai H, Kim J, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2001; 45:480–4.
6. Köhler T, Michéa-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechère JC. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol. 1997; 23:345–54.
7. Sawada I, Maseda H, Nakae T, Uchiyama H, Nomura N. A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR-mediated regulation in Pseudomonas aeruginosa. Microbiol Immunol. 2004; 48:435–9.
8. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006; 50:1633–41.
9. Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol. 2005; 187:1246–53.
10. Vogne C, Aires JR, Bailly C, Hocquet D, Plésiat P. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2004; 48:1676–80.
11. Sung JY, Koo SH, Kwon KC, Park JW, Ko CS, Shin SY, et al. Characterization of class 1 integrons in metallo-beta-lactamase-producing Pseudomonas aeruginosa. Korean J Clin Microbiol. 2009; 12:17–23.
12. Yoon WS, Lee BY, Bae IK, Kwon SB, Jeong SH, Jeong TJ, et al. Prevalence of imipenem-resistant Pseudomonas aeruginosa isolates and mechanisms of resistance. Korean J Clin Microbiol. 2005; 8:26–33.
13. Jalal S and Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist. 1998; 4:257–61.
14. Rubin J, Walker RD, Blickenstaff K, Bodeis-Jones S, Zhao S. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections. Vet Microbiol. 2008; 131:164–72.
15. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. M100-S10 (M2). Wayne, Pensylvania: CLSI. 2006.
16. Shannon KP and French GL. Increasing resistance to antimicrobial agents of Gram-negative organisms isolated at a London teaching hospital, 1995-2000. J Antimicrob Chemother. 2004; 53:818–25.
17. Chung SY, Sung JY, Kwon KC, Park JW, Ko CS, Shin SY, et al. Characteristics of acquired beta-lactamase gene in clinical isolates of multidrug-resistant Pseudomonas aeruginosa. Korean J Clin Microbiol. 2008; 11:98–106.
18. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004; 48:1797–802.
19. Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother. 1999; 43:287–91.
20. Lee K, Chong Y, Shin HB, Yong D. Rapid increase of imipenem-hydrolyzing Pseudomonas aeruginosa in a Korean hospital. Abstr E-85, 38th ICAAC. 1998.
21. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y. Korean Nationwide Surveillance of Antimicrobial Resistance Group. VIM-and IMP-type metallo-beta-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003; 9:868–71.
22. Kim IS, Lee NY, Ki CS, Oh WS, Peck KR, Song JH. Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and molecular typing of metallo-beta-lactamase producers in a Korean hospital. Microb Drug Resist. 2005; 11:355–9.
23. Akasaka T, Tanaka M, Yamaguchi A, Sato K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother. 2001; 45:2263–8.
Table 1.
Table 2.
Isolates | MICs (mg/L) FEP | Rep-PCR identical strains∗ | ||||||
---|---|---|---|---|---|---|---|---|
AMK | GEN | CAZ | FEP | IPM | MEM | CIP | ||
P1 | 128 | >1,024 | 16 | 4 | >1,024 | 128 | >32 | 4 |
P2 | 128 | >1,024 | 16 | 4 | >1,024 | 128 | >32 | 4 |
P3 | <2 | 64 | 64 | <2 | 256 | 16 | 4 | 5 |
P4 | 512 | >1,024 | 64 | 16 | >1,024 | 64 | >32 | 13 |
P5 | 128 | >1,024 | 16 | 4 | >1,024 | 128 | >32 | 4 |
P6 | 1,024 | 256 | >1,024 | >256 | >1,024 | 256 | 1 | 1 |
P8 | 1,024 | 256 | >1,024 | >256 | >1,024 | 64 | 1 | 1 |
P11 | 64 | 64 | 128 | 48 | >1,024 | 128 | 1 | 3 |
P15 | <2 | <2 | <2 | <2 | 16 | 2 | >32 | 1 |
P17 | >1,024 | 256 | >1,024 | >256 | >1,024 | 256 | >32 | 1 |
P18 | >1,024 | >1,024 | >1,024 | >256 | >1,024 | 512 | 2 | 1 |
P20 | <2 | <2 | 16 | <2 | 256 | 8 | 1 | 1 |
P28 | 32 | 32 | 256 | 128 | >1,024 | 16 | >32 | 1 |
P41 | >1,024 | 256 | >1,024 | >256 | >1,024 | 128 | 1 | 2 |
P48 | 16 | 32 | <2 | 8 | 512 | 32 | >32 | 6 |
P53 | 512 | >1,024 | 128 | >256 | 512 | 256 | >32 | 5 |
P55 | <2 | <2 | 16 | <2 | 256 | 8 | 1 | 1 |
P70 | <2 | <2 | 256 | >256 | 512 | 8 | 1 | 1 |
P86 | <2 | <2 | 256 | 128 | 512 | 16 | 1 | 1 |
P91 | 64 | 16 | 256 | >256 | >1,024 | 64 | 1 | 3 |
P92 | 32 | 32 | 256 | >256 | >1,024 | 32 | >32 | 3 |