Journal List > Korean J Clin Microbiol > v.14(4) > 1038229

Sung, Cho, Kwon, and Koo: Chromosomal Mutations in oprD, gyrA, and parC in Carbapenem Resistant Pseudomonas aeruginosa

Abstract

Background

Outbreaks of carbapenem resistant P. aeruginosa give rise to significant therapeutic challenges for treating nosocomial infections. In this study, we analyzed carbapenem resistance mechanisms in carbapenem resistant and clonally different P. aeruginosa strains. We analyzed chromosomal alterations in the genes of OprD and efflux system regulatory proteins (MexR, NalC, NalD, MexT, and MexZ). We also investigated chromosomal alterations in the quinolone resistance-determining region (QRDR) for quinolone resistance mechanisms.

Methods

Twenty-one clonally different P. aeruginosa strains were isolated by repetitive extragenic palindromic sequence-based PCR (rep-PCR). PCR and DNA sequencing were conducted for the detection of β-lactamase genes and chromosomal alterations of efflux pump regulatory genes, oprD, and QRDR in gyrA, gyrB, parC, and parE.

Results

Only one (P28) of the 21 strains harbored blaVIM-2. Two isolates had mutations in nalD or mexZ that were associated with efflux pump overexpression. Chromosomal alterations causing loss of OprD were found in 4 out of 21 carbapenem resistant P. aeruginosa strains. Nine of 10 imipenem and ciprofloxacin resistant strains had alterations in gyrA and/or parC.

Conclusion

Carbapenem resistance in P. aeruginosa was mediated by several mechanisms, including loss of the OprD, overexpression of efflux systems, and production of carbapenemase. Resistance to quinolone is frequently caused by point mutations in gyrA and/or parC.

REFERENCES

1. Jacoby GA and Medeiros AA. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991; 35:1697–704.
crossref
2. Lee K, Park KH, Jeong SH, Lim HS, Shin JH, Yong D, et al. Further increase of vancomycin-resistant Enterococcus faecium, amikacin- and fluoroquinolone-resistant Klebsiella pneumoniae, and imipenem-resistant Acinetobacter spp. in Korea: 2003 KONSAR surveillance. Yonsei Med J. 2006; 47:43–54.
crossref
3. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001; 47:247–50.
crossref
4. Edalucci E, Spinelli R, Dolzani L, Riccio ML, Dubois V, Tonin EA, et al. Acquisition of different carbapenem resistance mechanisms by an epidemic clonal lineage of Pseudomonas aeruginosa. Clin Microbiol Infect. 2008; 14:88–90.
crossref
5. Pai H, Kim J, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2001; 45:480–4.
6. Köhler T, Michéa-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechère JC. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol. 1997; 23:345–54.
7. Sawada I, Maseda H, Nakae T, Uchiyama H, Nomura N. A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR-mediated regulation in Pseudomonas aeruginosa. Microbiol Immunol. 2004; 48:435–9.
8. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006; 50:1633–41.
9. Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol. 2005; 187:1246–53.
10. Vogne C, Aires JR, Bailly C, Hocquet D, Plésiat P. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2004; 48:1676–80.
11. Sung JY, Koo SH, Kwon KC, Park JW, Ko CS, Shin SY, et al. Characterization of class 1 integrons in metallo-beta-lactamase-producing Pseudomonas aeruginosa. Korean J Clin Microbiol. 2009; 12:17–23.
12. Yoon WS, Lee BY, Bae IK, Kwon SB, Jeong SH, Jeong TJ, et al. Prevalence of imipenem-resistant Pseudomonas aeruginosa isolates and mechanisms of resistance. Korean J Clin Microbiol. 2005; 8:26–33.
13. Jalal S and Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist. 1998; 4:257–61.
14. Rubin J, Walker RD, Blickenstaff K, Bodeis-Jones S, Zhao S. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections. Vet Microbiol. 2008; 131:164–72.
crossref
15. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. M100-S10 (M2). Wayne, Pensylvania: CLSI. 2006.
16. Shannon KP and French GL. Increasing resistance to antimicrobial agents of Gram-negative organisms isolated at a London teaching hospital, 1995-2000. J Antimicrob Chemother. 2004; 53:818–25.
17. Chung SY, Sung JY, Kwon KC, Park JW, Ko CS, Shin SY, et al. Characteristics of acquired beta-lactamase gene in clinical isolates of multidrug-resistant Pseudomonas aeruginosa. Korean J Clin Microbiol. 2008; 11:98–106.
18. Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004; 48:1797–802.
19. Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother. 1999; 43:287–91.
20. Lee K, Chong Y, Shin HB, Yong D. Rapid increase of imipenem-hydrolyzing Pseudomonas aeruginosa in a Korean hospital. Abstr E-85, 38th ICAAC. 1998.
21. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y. Korean Nationwide Surveillance of Antimicrobial Resistance Group. VIM-and IMP-type metallo-beta-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003; 9:868–71.
22. Kim IS, Lee NY, Ki CS, Oh WS, Peck KR, Song JH. Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and molecular typing of metallo-beta-lactamase producers in a Korean hospital. Microb Drug Resist. 2005; 11:355–9.
23. Akasaka T, Tanaka M, Yamaguchi A, Sato K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother. 2001; 45:2263–8.

Table 1.
Oligonucleotide primers for the detection of efflux regulator-encoding, OprD, and QRDR genes
Primer pairs Target Sequence (5′ – 3′) Reference
Efflux regulator-encoding genes      
 mexR-F mexR TGTTCTTAAATATCCTCAAGCGG 8
 mexR-R   GTTGCATAGCGTTGTCCTCA  
 nalC-F nalC TCAACCCTAACGAGAAACGCT 8
 nalC-R   TCCACCTCACCGAACTGC  
 nalD-F nalD GCGGCTAAAATCGGTACACT 8
 nalD-R   ACGTCCAGGTGGATCTTGG  
 mexT-F mexT AAAACCACCCGTCGTTATTG 8
 mexT-R   CAGTTCGTCGGTGTAGCTGA  
 mexZ-F mexZ ATTGGATGTGCATGGGTG 8
 mexZ-R   TGGAGATCGAAGGCAGC  
Opr D gene      
 oprD-F oprD ATGCGACATGCGTCATGCAAT 4
 oprD-R   CGGTACCTACGCCCTTCCTT  
QRDR gene      
 GyrA-F gyrA CGGGATGAACGAATTGGGTGTGA 14
 GyrA-R   AATTTTACTCATACGTGCTTCGG  
 ParC-F parC TTCCCGTGCATTTCGATCAGTACTTC 14
 ParC-R   CGTATGACAAAGGATTCGGTAAATC  
 ParE-F parE GTCCGTAAAGCAATCAAAG 14
 ParE-R   CTTTATATAAAGGCGGTAACG  
 GyrB-F gyrB TGAAATTCTTGCTGGAAAAC 14
 GyrB-R   CAACAATAGGACGCATGTAAC  
Table 2.
Minimum inhibitory concentrations (MICs) of the 7 antimicrobial agents for 21 isolates of imipenem-resistant Pseudomonas aeruginosa as determined by agar dilution
Isolates MICs (mg/L) FEP Rep-PCR identical strains
AMK GEN CAZ FEP IPM MEM CIP
P1 128 >1,024 16 4 >1,024 128 >32 4
P2 128 >1,024 16 4 >1,024 128 >32 4
P3 <2 64 64 <2 256 16 4 5
P4 512 >1,024 64 16 >1,024 64 >32 13
P5 128 >1,024 16 4 >1,024 128 >32 4
P6 1,024 256 >1,024 >256 >1,024 256 1 1
P8 1,024 256 >1,024 >256 >1,024 64 1 1
P11 64 64 128 48 >1,024 128 1 3
P15 <2 <2 <2 <2 16 2 >32 1
P17 >1,024 256 >1,024 >256 >1,024 256 >32 1
P18 >1,024 >1,024 >1,024 >256 >1,024 512 2 1
P20 <2 <2 16 <2 256 8 1 1
P28 32 32 256 128 >1,024 16 >32 1
P41 >1,024 256 >1,024 >256 >1,024 128 1 2
P48 16 32 <2 8 512 32 >32 6
P53 512 >1,024 128 >256 512 256 >32 5
P55 <2 <2 16 <2 256 8 1 1
P70 <2 <2 256 >256 512 8 1 1
P86 <2 <2 256 128 512 16 1 1
P91 64 16 256 >256 >1,024 64 1 3
P92 32 32 256 >256 >1,024 32 >32 3

The number of strain(s) shown identical rep-PCR band pattern. Abbreviations: AMK, amikacin; GEN, gentamicin; CAZ, ceftazidime; FEP, cefepime; IPM, imipenem; MEM, meropenem; CIP, ciprofloxacin.

Table 3.
Chromosomal alteration(s) in efflux regulator-encoding genes of imipenem-resistant Pseudomonas aeruginosa
Isolate Chromosomal alteration(s) in
MexR NalC NalD MexT MexZ
P1 Val126→ Glu None None Leu26→ Val None
P2 None Gly71→Glu, Ser209→Arg None Leu26→ Val Ser186→Asp
P3 Val126→ Glu Gly71→Glu, Ser209→Arg None Leu26→ Val Ser186→Asp
P4 None Gly71→Glu, Glu153→Gln, Ser209→Arg None Leu26→ Val None
P5 None Gly71→Glu, Glu153→Gln, Ser209→Arg None Leu26→ Val His51→Tyr, Arg138→Leu, Ser186→Asp
P6 None None None None None
P8 Val126→ Glu Gly71→Glu, Ser209→Arg None None Arg138→Leu, Ser186→Asp
P11 None Gly71→Glu, Ser209→Arg None Leu26→ Val Arg138→Leu, Ser186→Asp
P15 None None None None Gln132→stop
P17 None Gly71→Glu, Glu153→Gln, Ser209→Arg None Leu26→ Val None
P18 None Gly71→Glu, Ala186→Thr None Leu26→ Val Arg138→Leu, Ser186→Asp
P20 Val126→ Glu Gly71→Glu, Ser209→Arg Thr188→A la Leu26→ Val None
P28 None None None Leu26→ Val None
P41 Val126→ Glu Gly71→Glu, Ser209→Arg None None None
P48 None Gly71→Glu, Ser209→Arg None Leu26→ Val None
P53 None Gly71→Glu, Glu153→Gln, Ser209→Arg None Leu26→ Val Arg138→Leu, Ser186→Asp
P55 None None None None Arg138→Leu, Ser186→Asp
P70 None None None None Arg138→Leu, Ser186→Asp
P86 None Gly71→Glu, Ser209→Arg None Leu26→ Val None
P91 P92 Val126→ Glu Val126→ Glu Gly71→Glu, Ser209→Arg None None None Leu26→ Val Leu26→ Val Arg138→Leu, Ser186→Asp Ser186→ Asp
Table 4.
Chromosomal alteration(s) in oprD, gyrA, and parC of imipenem-resistant Pseudomonas aeruginosa
Isolate Chromosomal alteration(s) in
OprD GyrA ParC
P1 None Thr83→Ile Ser87→Leu
P2 Deletion bp 352-368 Thr83→Ile Ser87→Leu
P3 None None None
P4 None Thr83→Ile Ser87→Leu
P5 None Thr83→Ile Ser87→Leu
P6 None None Ser87→Leu
P8 None None None
P11 Tyr91→stop None None
P15 None None Ser87→Leu
P17 None Thr83→Ile Ser87→Leu
P18 None Thr83→Ile Ser87→Leu
P20 None Thr83→Ile, None
P28 None Asp87→Tyr  
P41 None Thr83→Ile Ser87→Leu
P48 Deletion G 333 None Ser87→Leu
P53 None Thr83→Ile Ser87→Trp
P55 None Thr83→Ile Ser87→Leu
P70 None None None
P86 None None None
P91 None None None
P92 GA insertion after A382 None None
TOOLS
Similar articles