Abstract
Background
Accurate detection of organisms producing extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase is very important for treatment of patients. However, unlike the ESBL confirmatory test, there are no guidelines for detection of organisms producing AmpC β-lactamase. We evaluated a detection method using boronic acid (BA) for ESBL and AmpC β-lactamase.
Methods
Clinical isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mirabilis showing intermediate resistance or resistance to cefoxitin (FOX) or positive for ESBL were tested. A ≥5 mm increase in zone diameter of ceftazidime/clavulanic acid/BA (CAZ/CA/BA) and/or cefotaxime/clavulanic acid/BA (CTX/CA/BA) versus CAZ/BA and/or CTX /BA was considered positive for ESBL. Likewise, a ≥5 mm increase in zone diameter of FOX/BA and/or cefotetan/BA (CTT/BA) versus FOX and/or CTT alone was considered positive for AmpC β-lactamase.
Results
Among 622 clinical isolates, ESBL positive rates by the CLSI ESBL confirmatory test or by the BA method were 18.1% or 18.4% for E. coli, 38.3% or 40.4% for K. pneumoniae, 8.7% or 8.7% for K. oxytoca, and 14.8% or 14.8% for P. mirabilis, respectively. AmpC β-lactamase positive rates using the BA method were 3.7% for E. coli, 33.3% for K. pneumoniae, 0% for K. oxytoca, and 7.4% for P. mirabilis. The detection rates of coproducing ESBL and AmpC β-lactamase were 2.4% in E. coli 27.1% in K. pneumoniae, and 3.7% in P. mirabilis.
REFERENCES
1. Uh Y, Kim HY, et al. Antimicrobial Agents and Antimicrobial Susceptibility Test. 1st ed.Paju: KIS;2007. p. 118–9.
2. Beesley T, Gascoyne N, Knott-Hunziker V, Petursson S, Waley SG, Jaurin B, et al. The inhibition of class C β-lactamases by boronic acids. Biochem J. 1983; 209:229–33.
3. Brenwald NP, Jevons G, Andrews J, Ang L, Fraise P. Disc methods for detecting AmpC β-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother. 2005; 56:600–1.
4. Coudron PE, Moland ES, Thomson KS. Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J Clin Microbiol. 2000; 38:1791–6.
5. Yagi T, Wachino J, Kurokawa H, Suzuki S, Yamane K, Doi Y, et al. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 2005; 43:2551–8.
6. Song W, Bae IK, Lee YN, Lee CH, Lee SH, Jeong SH. Detection of extended-spectrum β-lactamases by using boronic acid as an AmpC β-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J Clin Microbiol. 2007; 45:1180–4.
7. Song W, Jeong SH, Kim JS, Kim HS, Shin DH, Roh KH, et al. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis. 2007; 57:315–8.
8. Uh Y, Son JS, Hwang GY, Jang IH, Yoon KJ, Seo DM. Microplate identification system of Enterobacteriaceae. Korean J Clin Microbiol. 1999; 2:135–43.
9. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 16th informational supplement. Document M100-S16. Wayne, PA; CLSI,. 2006.
10. Bauernfeind A, Stemplinger I, Jungwirth R, Giamarellou H. Characterization of the plasmidic β-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob Agents Chemother. 1996; 40:221–4.
11. Queenan AM, Jenkins S, Bush K. Cloning and biochemical characterization of FOX-5, an AmpC-type plasmid-encoded β-lactamase from a New York City Klebsiella pneumoniae clinical isolate. Antimicrob Agents Chemother. 2001; 45:3189–94.
12. Walther-Rasmussen J, H⊘iby N. Plasmid-borne AmpC β-lactamases. Can J Microbiol. 2002; 48:479–93.
13. Bauernfeind A, Hohl P, Schneider I, Jungwirth R, Frei R. Escherichia coli producing a cephamycinase (CMY-2) from a patient from the Libyan-Tunisian border region. Clin Microbiol Infect. 1998; 4:168–70.
14. Coudron PE, Hanson ND, Climo MW. Occurrence of extended-spectrum and AmpC beta-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC beta-lactamases. J Clin Microbiol. 2003; 41:772–7.
15. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother. 1997; 41:563–9.
16. Nadjar D, Rouveau M, Verdet C, Donay L, Herrmann J, Lagrange PH, et al. Outbreak of Klebsiella pneumoniae producing transferable AmpC-type β-lactamase (ACC-1) originating from Hafnia alvei. FEMS Microbiol Lett. 2000; 187:35–40.
17. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol. 2005; 43:4163–7.
18. Song W, Kim JS, Kim HS, Yong D, Jeong SH, Park MJ, et al. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis. 2006; 55:219–24.
19. Lee K, Hong SG, Park YJ, Lee HS, Song W, Jeong J, et al. Evaluation of phenotypic screening methods for detecting plasmid-mediated AmpC β-lactamases-producing isolates of Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2005; 53:319–23.
20. Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol. 2005; 43:3110–3.
21. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002; 40:2153–62.
22. Smith Moland E, Hanson ND, Herrera VL, Black JA, Lockhart TJ, Hossain A, et al. Plasmid-mediated, carbapenem-hydrolysing β-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother. 2003; 51:711–4.
23. Jeong SH, Song W, Park MJ, Kim JS, Kim HS, Bae IK, et al. Boronic acid disk tests for identification of extended-spectrum β-lactamase production in clinical isolates of Enterobacteriaceae producing chromosomal AmpC β-lactamases. Int J Antimicrob Agents. 2008; 31:467–71.
Table 1.
Table 2.
Table 3.
Table 4.
Abbreviations: ESBL, extended-spectrum β-lactamase; SXT, cotrimoxazole; CIP, ciprofloxacin; AMK, amikacin; GM, gentamicin; TOB, tobramycin; MAN, cefamandole; CFS, cefoperazone/sulbactam; PPT, piperacillin/tazobactam; ATM, aztreonam; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; FOX, cefoxitin; CTT, cefotetan; IPM, imipenem.