Journal List > J Korean Fract Soc > v.20(1) > 1037620

Park, Kim, Choi, Park, and Kim: Biomechanical Efficacy of Various Anterior Spinal Fixation in Treatment of Thoraco-lumbar Spine Fracture

Abstract

Purpose

To evaluate the biomechanical results according to various anterior spinal fixation methodology in the treatment of thoracolumbar spine fracture.

Materials and Methods

The comparative analysis of fixation method was evaluated by three dimensional finite element model using the 1 mm reconstruction image of CT. Authors evaluated the flexion, extension, lateral bending, torsional stresses with 12 fixation methods for the compression and burst fracture.

Results

In biomechanical analysis, stiffness of body-fixation device was more stable in two-rod system in compression fracture and was stable in one-rod, two-rod system in burst fracture, but two-rod system was showed over-increase of stiffness.

Conclusion

Authors recommend the usage of two-rod system in anterior fixation only and anterior one-rod system in anterior-posterior fixation.

Figures and Tables

Fig. 1

The finite element models of thoracolumbar spine segments with different anteroposterior fixation techniques were developed.

(A) One-rod anterior fixation with posterior fixation (1R-M-P).
(B) Two-rod anterior fixation with posterior fixation (2R-M-P).
(C) Posterior fixation (0R-M-P).
jkfs-20-70-g001
Table 1

All datas of stiffness in construct varieties (Nm/°)

jkfs-20-70-i001

0R-NM-P: 0 rod - no midcolumn decompression - pedicle screw instrumentation, 1R-NM-NP: 1 rod - no midcolumn decompression - no pedicle screw instrumentation, 1R-NM-P: 1 rod - no midcolumn decompression - pedicle screw instrumentation, 2R-NM-NP: 2 rod - no midcolumn decompression - no pedicle screw instrumentation, 2R-NM-P: 2 rod - no midcolumn decompression - pedicle screw instrumentation, 0R-M-P: 0 rod - midcolumn decompression - pedicle screw instrumentation, 1R-M-NP: 1 rod - midcolumn decompression - no pedicle screw instrumentation, 1R-M-P: 1 rod - midcolumn decompression - pedicle screw instrumentation, 2R-M-NP: 2 rod - midcolumn decompression - no pedicle screw instrumentation, 2R-M-P: 2 rod - midcolumn decompression - pedicle screw instrumentation.

References

1. An HS, Vaccaro A, Cotler JM, Lin S. Low lumbar burst fractures. Comparison among body cast, Harrington rod, Luque rod, and Steffee plate. Spine (Phila Pa 1976). 1991; 16:Suppl 8. S440–S444.
2. Been HD. Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device. Spine. 1991; 16:70–77.
crossref
3. Been HD, Bouma GJ. Comparison of two types of surgery for thoraco-lumbar burst fractures: combined anterior and posterior stabilisation vs. posterior instrumentation only. Acta Neurochir (Wien). 1999; 141:349–357.
crossref
4. Carl AL, Tranmer BI, Sachs BL. Anterolateral dynamized instrumentation and fusion for unstable thoracolumbar and lumbar burst fractures. Spine (Phila Pa 1976). 1997; 22:686–690.
crossref
5. Choi IS, Kim WI, Lim S, Lee SH. Treatment of unstable fracture of the thoracolumbar spine using Kaneda instrumentation. J Korean Fract Soc. 1994; 7:192–200.
crossref
6. Denis F, Armstrong GW, Searls K, Matta L. Acute thoracolumbar burst fractures in the absence of neurological deficit. A comparison between operative and nonoperative treatment. Clin Orthop Relat Res. 1984; 189:142–149.
7. Dewald RL. Burst fractures of the thoracic and lumbar spine. Clin Orthop Relat Res. 1984; 189:150–161.
crossref
8. Ebelke DK, Asher MA, Neff JR, Kraker DP. Survivorship analysis of VSP spine instrumentation in the treatment of thoracolumbar and lumbar burst fractures. Spine (Phila Pa 1976). 1991; 16:Suppl 8. S428–S432.
crossref
9. Edwards CC, Levine AM. Early rod-sleeve stabilization of the injured thoracic and lumbar spine. Orthop Clin North Am. 1986; 17:121–145.
crossref
10. Goel VK, Ramirez SA, Kong W, Gilbertson LG. Cancellous bone Young's modulus variation within the vertebral body of a ligamentous lumbar spine - application of bone adaptive remodeling concepts. J Biomech Eng. 1995; 117:266–271.
crossref
11. Gurr KR, McAfee PC, Shih CM. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. J Bone Joint Surg Am. 1988; 70:1182–1191.
crossref
12. Gurwitz GS, Dawson JM, McNamara MJ, Federspiel CF, Spengler DM. Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. Spine (Phila Pa 1976). 1993; 18:977–982.
crossref
13. Kaneda K, Abumi K, Fujiya M. Burst fractures with neurologic deficits of the thoracolumbar-lumbar spine. Results of anterior decompression and stabilization with anterior instrumentation. Spine (Phila Pa 1976). 1984; 9:788–795.
crossref
14. Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M. Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am. 1997; 79:69–83.
crossref
15. Kim JO, Kang OY, Kang CN, Ahn SY. The comparison of conservative treatment with operative treatment in bursting fracture. J Korean Fract Soc. 1995; 8:807–814.
16. Kostuik JP. Anterior fixation for fractures of the thoracic and lumbar spine with or without neurologic involvement. Clin Orthop Relat Res. 1984; 189:103–115.
crossref
17. Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine (Phila Pa 1976). 1996; 21:2570–2579.
crossref
18. McDonough PW, Davis R, Tribus C, Zdeblick TA. The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. Spine (Phila Pa 1976). 2004; 29:1901–1908.
crossref
19. McLain RF, Sparling E, Benson DR. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am. 1993; 75:162–167.
crossref
20. Natarajan RN, Andersson GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine (Phila Pa 1976). 1999; 24:1873–1881.
crossref
21. Olerud S, Karlstrom G, Sjostrom L. Transpedicular fixation of thoracolumbar vertebral fractures. Clin Orthop Relat Res. 1988; 227:44–51.
crossref
22. Payer M. Unstable burst fractures of the thoraco-lumbar junction: treatment by posterior bisegmental correction/fixation and staged anterior corpectomy and titanium cage implantation. Acta Neurochir (Wien). 2006; 148:299–306.
crossref
23. Pflugmacher R, Schleicher P, Schaefer J, et al. Biomechanical comparison of expandable cages for vertebral body replacement in thoracolumbar spine. Spine (Phila Pa 1976). 2004; 29:1413–1419.
crossref
24. Polikeit A, Ferguson SJ, Nolte LP, Orr TE. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J. 2003; 12:413–420.
crossref
25. Schreiber U, Bence T, Grupp T, et al. Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation. Eur Spine J. 2005; 14:197–204.
crossref
26. Whitesides TE Jr. Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res. 1977; 128:78–92.
crossref
27. Wood KB, Bohn D, Mehbod A. Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit: a prospective, randomized study. J Spinal Disord Tech. 2005; 18:S15–S23.
28. Zhong ZC, Wei SH, Wang JP, Feng CK, Chen CS, Yu CH. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys. 2006; 28:90–98.
crossref
TOOLS
Similar articles