1. Keller PJ, Lin AF, Arendt LM, Klebba I, Jones AD, Rudnick JA, et al. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res. 2010; 12:R87. PMID:
20964822.
2. Larson PS, de las Morenas A, Bennett SR, Cupples LA, Rosenberg CL. Loss of heterozygosity or allele imbalance in histologically normal breast epithelium is distinct from loss of heterozygosity or allele imbalance in co-existing carcinomas. Am J Pathol. 2002; 161:283–290. PMID:
12107113.
3. Larson PS, de las Morenas A, Cupples LA, Huang K, Rosenberg CL. Genetically abnormal clones in histologically normal breast tissue. Am J Pathol. 1998; 152:1591–1598. PMID:
9626062.
4. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996; 56:402–404. PMID:
8542598.
5. Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007; 177:87–101. PMID:
17420292.
6. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001; 67:93–109. PMID:
11519870.
7. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008; 3:109–118. PMID:
18593563.
8. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008; 14:1384–1389. PMID:
19029987.
9. Dairkee SH, Puett L, Hackett AJ. Expression of basal and luminal epithelium-specific keratins in normal, benign, and malignant breast tissue. J Natl Cancer Inst. 1988; 80:691–695. PMID:
2453676.
10. Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech. 2001; 52:190–203. PMID:
11169867.
11. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990; 50:6075–6086. PMID:
1975513.
12. Holst CR, Nuovo GJ, Esteller M, Chew K, Baylin SB, Herman JG, et al. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 2003; 63:1596–1601. PMID:
12670910.
13. Santagata S, Thakkar A, Ergonul A, Wang B, Woo T, Hu R, et al. Taxonomy of breast cancer based on normal cell phenotype predicts outcome. J Clin Invest. 2014; 124:859–870. PMID:
24463450.
14. Graham K, de las Morenas A, Tripathi A, King C, Kavanah M, Mendez J, et al. Gene expression in histologically normal epithelium from breast cancer patients and from cancer-free prophylactic mastectomy patients shares a similar profile. Br J Cancer. 2010; 102:1284–1293. PMID:
20197764.
15. Schummer M, Green A, Beatty JD, Karlan BY, Karlan S, Gross J, et al. Comparison of breast cancer to healthy control tissue discovers novel markers with potential for prognosis and early detection. PLoS One. 2010; 5:e9122. PMID:
20161755.
16. Tripathi A, King C, de la Morenas A, Perry VK, Burke B, Antoine GA, et al. Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int J Cancer. 2008; 122:1557–1566. PMID:
18058819.
17. Zubor P, Hatok J, Moricova P, Kajo K, Kapustova I, Mendelova A, et al. Gene expression abnormalities in histologically normal breast epithelium from patients with luminal type of breast cancer. Mol Biol Rep. 2015; 42:977–988. PMID:
25407308.
18. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 2001; 15:50–65. PMID:
11156605.
19. Lakhani SR, Chaggar R, Davies S, Jones C, Collins N, Odel C, et al. Genetic alterations in 'normal' luminal and myoepithelial cells of the breast. J Pathol. 1999; 189:496–503. PMID:
10629549.
20. Going JJ, Abd El-Monem HM, Craft JA. Clonal origins of human breast cancer. J Pathol. 2001; 194:406–412. PMID:
11523047.
21. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998; 396:643–649. PMID:
9872311.
22. Degnim AC, Visscher DW, Hoskin TL, Frost MH, Vierkant RA, Vachon CM, et al. Histologic findings in normal breast tissues: comparison to reduction mammaplasty and benign breast disease tissues. Breast Cancer Res Treat. 2012; 133:169–177. PMID:
21881938.
23. Grigoriadis A, Mackay A, Reis-Filho JS, Steele D, Iseli C, Stevenson BJ, et al. Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data. Breast Cancer Res. 2006; 8:R56. PMID:
17014703.
24. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2013; 2:78–91. PMID:
24511467.
25. Ma L, Nie L, Liu J, Zhang B, Song S, Sun M, et al. An RNA-seq-based gene expression profiling of radiation-induced tumorigenic mammary epithelial cells. Genomics Proteomics Bioinformatics. 2012; 10:326–335. PMID:
23317700.
26. Smart CE, Wronski A, French JD, Edwards SL, Asselin-Labat ML, Waddell N, et al. Analysis of Brca1-deficient mouse mammary glands reveals reciprocal regulation of Brca1 and c-kit. Oncogene. 2011; 30:1597–1607. PMID:
21132007.
27. Al-Rakan MA, Colak D, Hendrayani SF, Al-Bakheet A, Al-Mohanna FH, Kaya N, et al. Breast stromal fibroblasts from histologically normal surgical margins are pro-carcinogenic. J Pathol. 2013; 231:457–465. PMID:
24009142.
28. Zubeldia-Plazaola A, Ametller E, Mancino M, Prats de Puig M, López-Plana A, Guzman F. Comparison of methods for the isolation of human breast epithelial and myoepithelial cells. Front Cell Dev Biol. 2015; 3:32. PMID:
26052514.
29. Påhlman S, Lund LR, Jögi A. Differential HIF-1alpha and HIF-2alpha expression in mammary epithelial cells during fat pad invasion, lactation, and involution. PLoS One. 2015; 10:e0125771. PMID:
25955753.
30. Pistone Creydt V, Fletcher SJ, Giudice J, Bruzzone A, Chasseing NA, Gonzalez EG, et al. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells. Clin Transl Oncol. 2013; 15:124–131. PMID:
22855180.
31. Miettinen M, Mustonen M, Poutanen M, Isomaa V, Wickman M, Söderqvist G, et al. 17Beta-hydroxysteroid dehydrogenases in normal human mammary epithelial cells and breast tissue. Breast Cancer Res Treat. 1999; 57:175–182. PMID:
10598044.
32. Bernstein L, Press MF. Does estrogen receptor expression in normal breast tissue predict breast cancer risk? J Natl Cancer Inst. 1998; 90:5–7. PMID:
9428773.
33. Buxant F, Engohan-Aloghe C, Noël JC. Estrogen receptor, progesterone receptor, and glucocorticoid receptor expression in normal breast tissue, breast in situ carcinoma, and invasive breast cancer. Appl Immunohistochem Mol Morphol. 2010; 18:254–257. PMID:
19875955.
34. Connor EE, Meyer MJ, Li RW, Van Amburgh ME, Boisclair YR, Capuco AV. Regulation of gene expression in the bovine mammary gland by ovarian steroids. J Dairy Sci. 2007; 90(Suppl 1):E55–E65. PMID:
17517752.
35. Khan SA, Yee KA, Kaplan C, Siddiqui JF. Estrogen receptor alpha expression in normal human breast epithelium is consistent over time. Int J Cancer. 2002; 102:334–337. PMID:
12402301.
36. Shoker BS, Jarvis C, Clarke RB, Anderson E, Hewlett J, Davies MP, et al. Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol. 1999; 155:1811–1815. PMID:
10595909.
37. Ricketts D, Turnbull L, Ryall G, Bakhshi R, Rawson NS, Gazet JC, et al. Estrogen and progesterone receptors in the normal female breast. Cancer Res. 1991; 51:1817–1822. PMID:
2004366.
38. Lawson JS, Field AS, Tran DD, Killeen J, Maskarenic G, Ishikura H, et al. Breast cancer incidence and estrogen receptor alpha in normal mammary tissue: an epidemiologic study among Japanese women in Japan and Hawaii. Int J Cancer. 2002; 97:685–687. PMID:
11807798.
39. Huang B, Omoto Y, Iwase H, Yamashita H, Toyama T, Coombes RC, et al. Differential expression of estrogen receptor alpha, beta1, and beta2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A. 2014; 111:1933–1938. PMID:
24449868.
40. Chantzi NI, Palaiologou M, Stylianidou A, Goutas N, Vassilaros S, Kourea HP, et al. Estrogen receptor beta2 is inversely correlated with Ki-67 in hyperplastic and noninvasive neoplastic breast lesions. J Cancer Res Clin Oncol. 2014; 140:1057–1066. PMID:
24671226.
41. Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013; 139:539–552. PMID:
23674192.
42. Fasching PA, Heusinger K, Haeberle L, Niklos M, Hein A, Bayer CM, et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer. 2011; 11:486. PMID:
22081974.
43. Romero Q, Bendahl PO, Fernö M, Grabau D, Borgquist S. A novel model for Ki67 assessment in breast cancer. Diagn Pathol. 2014; 9:118. PMID:
24934660.
44. Järvinen TA, Pelto-Huikko M, Holli K, Isola J. Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status,grade, and proliferation rate in breast cancer. Am J Pathol. 2000; 156:29–35. PMID:
10623650.
45. Green AR, Young P, Krivinskas S, Rakha EA, Claire Paish E, Powe DG, et al. The expression of ERalpha, ERbeta and PR in lobular carcinoma in situ of the breast determined using laser microdissection and real-time PCR. Histopathology. 2009; 54:419–427. PMID:
19309393.
46. Tong D, Schuster E, Seifert M, Czerwenka K, Leodolte S, Zeillinger R. Expression of estrogen receptor beta isoforms in human breast cancer tissues and cell lines. Breast Cancer Res Treat. 2002; 71:249–255. PMID:
12002343.
47. Haslam SZ, Shyamala G. Progesterone receptors in normal mammary gland: receptor modulations in relation to differentiation. J Cell Biol. 1980; 86:730–737. PMID:
7410476.
48. Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res. 2002; 4:197–201. PMID:
12223124.
49. Haslam SZ. Acquisition of estrogen-dependent progesterone receptors by normal mouse mammary gland: ontogeny of mammary progesterone receptors. J Steroid Biochem. 1988; 31:9–13. PMID:
3398533.
50. Wang S, Counterman LJ, Haslam SZ. Progesterone action in normal mouse mammary gland. Endocrinology. 1990; 127:2183–2189. PMID:
2226309.
51. Fink-Retter A, Gschwantler-Kaulich D, Hudelist G, Mueller R, Kubista E, Czerwenka K, et al. Differential spatial expression and activation pattern of EGFR and HER2 in human breast cancer. Oncol Rep. 2007; 18:299–304. PMID:
17611648.
52. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990; 5:953–962. PMID:
1973830.
53. Flågeng MH, Knappskog S, Haynes BP, Lønning PE, Mellgren G. Inverse regulation of EGFR/HER1 and HER2-4 in normal and malignant human breast tissue. PLoS One. 2013; 8:e74618. PMID:
23991224.
54. Camp RL, Dolled-Filhart M, King BL, Rimm DL. Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res. 2003; 63:1445–1448. PMID:
12670887.
55. Hicks DG, Schiffhauer L. Standardized assessment of the HER2 status in breast cancer by immunohistochemistry. Lab Med. 2011; 42:459–467.
56. Niikura N, Ueno NT. Change in HER2 status during breast tumor progression. Cancer Biomark. 2012-2013; 12:251–255. PMID:
23735945.
57. Luna-Moré S, Weil B, Bautista D, Garrido E, Florez P, Martínez C. Bcl-2 protein in normal, hyperplastic and neoplastic breast tissues: a metabolite of the putative stem-cell subpopulation of the mammary gland. Histol Histopathol. 2004; 19:457–463. PMID:
15024706.
58. Yu B, Sun X, Shen HY, Gao F, Fan YM, Sun ZJ. Expression of the apoptosis-related genes BCL-2 and BAD in human breast carcinoma and their associated relationship with chemosensitivity. J Exp Clin Cancer Res. 2010; 29:107. PMID:
20691103.
59. Bargou RC, Daniel PT, Mapara MY, Bommert K, Wagener C, Kallinich B, et al. Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-alpha expression in tumor cells correlates with resistance towards apoptosis. Int J Cancer. 1995; 60:854–859. PMID:
7896458.
60. Cericatto R, Pozzobon A, Morsch DM, Menke CH, Brum IS, Spritzer PM. Estrogen receptor-alpha, bcl-2 and c-myc gene expression in fibroadenomas and adjacent normal breast: association with nodule size, hormonal and reproductive features. Steroids. 2005; 70:153–160. PMID:
15763593.
61. Lima MA, da Silva BB. Expression of Ki-67 and Bcl-2 biomarkers in normal breast tissue from women of reproductive age treated with raloxifene. Arch Gynecol Obstet. 2012; 285:223–227. PMID:
21573987.
62. Feuerhake F, Sigg W, Höfter EA, Dimpfl T, Welsch U. Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res. 2000; 299:47–58. PMID:
10654069.
63. Tarulli GA, Butler LM, Tilley WD, Hickey TE. Bringing androgens up a NOTCH in breast cancer. Endocr Relat Cancer. 2014; 21:T183–T202. PMID:
25001242.
64. Nieto CM, Rider LC, Cramer SD. Influence of stromal-epithelial interactions on androgen action. Endocr Relat Cancer. 2014; 21:T147–T160. PMID:
24872510.
65. Barton VN, D'Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK. Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease. Horm Cancer. 2015; 6:206–213. PMID:
26201402.
66. Al Joudi FS. Human mammaglobin in breast cancer: a brief review of its clinical utility. Indian J Med Res. 2014; 139:675–685. PMID:
25027076.
67. Koh EH, Cho YW, Mun YJ, Ryu JH, Kim EJ, Choi DS, et al. Upregulation of human mammaglobin reduces migration and invasion of breast cancer cells. Cancer Invest. 2014; 32:22–29. PMID:
24328556.
68. Huang Y, Zhang HQ, Wang J, Song XG, Wang GH, Guan Q, et al. Cloning expression, monoclonal antibody preparation and serologic study of mammaglobin in breast cancer. Neoplasma. 2011; 58:436–440. PMID:
21744998.
69. Tafreshi NK, Enkemann SA, Bui MM, Lloyd MC, Abrahams D, Huynh AS, et al. A mammaglobin-A targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes. Cancer Res. 2011; 71:1050–1059. PMID:
21169406.
70. Rehman F, Nagi AH, Hussain M. Immunohistochemical expression and correlation of mammaglobin with the grading system of breast carcinoma. Indian J Pathol Microbiol. 2010; 53:619–623. PMID:
21045380.
71. van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008; 65:3756–3788. PMID:
18726070.
72. Takeichi M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem. 1990; 59:237–252. PMID:
2197976.
73. Berx G, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 2001; 3:289–293. PMID:
11597316.
74. Ionescu Popescu C, Giuşcă SE, Liliac L, Avadanei R, Ceaşuu R, Cîmpean AM, et al. E-cadherin expression in molecular types of breast carcinoma. Rom J Morphol Embryol. 2013; 54:267–273. PMID:
23771069.
75. Fulga V, Rudico L, Balica AR, Cimpean AM, Saptefrati L, Margan MM, et al. Differential expression of E-cadherin in primary breast cancer and corresponding lymph node metastases. Anticancer Res. 2015; 35:759–765. PMID:
25667455.
76. Ren S, Abuel-Haija M, Khurana JS, Zhang X. D2-40: an additional marker for myoepithelial cells of breast and the precaution in interpreting tumor lymphovascular invasion. Int J Clin Exp Pathol. 2011; 4:175–182. PMID:
21326813.
77. Kanner WA, Galgano MT, Atkins KA. Podoplanin expression in basal and myoepithelial cells: utility and potential pitfalls. Appl Immunohistochem Mol Morphol. 2010; 18:226–230. PMID:
20042851.
78. Rabban JT, Chen YY. D2-40 expression by breast myoepithelium: potential pitfalls in distinguishing intralymphatic carcinoma from in situ carcinoma. Hum Pathol. 2008; 39:175–183. PMID:
18206495.
79. Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van Dam P, Van Marck EA, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res. 2005; 11:7637–7642. PMID:
16278382.
80. Kaiserling E. Immunohistochemical identification of lymph vessels with D2-40 in diagnostic pathology. Pathologe. 2004; 25:362–374. PMID:
15164222.
81. Viacava P, Naccarato AG, Bevilacqua G. Spectrum of GCDFP-15 expression in human fetal and adult normal tissues. Virchows Arch. 1998; 432:255–260. PMID:
9532005.
82. Cassoni P, Sapino A, Haagensen DE, Naldoni C, Bussolati G. Mitogenic effect of the 15-kDa gross cystic disease fluid protein (GCDFP-15) on breast-cancer cell lines and on immortal mammary cells. Int J Cancer. 1995; 60:216–220. PMID:
7829219.
83. Myal Y, Robinson DB, Iwasiow B, Tsuyuki D, Wong P, Shiu RP. The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol. 1991; 80:165–175. PMID:
1955075.
84. Chen L, Yin X, Lu S, Chen G, Dong L. Basal cytokeratin phenotypes of myoepithelial cells indicates the origin of ductal carcinomas in situ of the breast. Appl Immunohistochem Mol Morphol. 2015; 23:558–564. PMID:
26336082.
85. Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman ML, et al. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol. 2015; 9:1636–1654. PMID:
26026368.
86. Li Z, Ren M, Tian J, Jiang S, Liu Y, Zhang L, et al. The differences in ultrasound and clinicopathological features between basal-like and normal-like subtypes of triple negative breast cancer. PLoS One. 2015; 10:e0114820. PMID:
25734578.
87. Hyun KA, Goo KB, Han H, Sohn J, Choi W, Kim SI, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016; 3. 22. DOI:
10.18632/oncotarget.8250. Epub.
88. Spizzo G, Gastl G, Wolf D, Gunsilius E, Steurer M, Fong D, et al. Correlation of COX-2 and Ep-CAM overexpression in human invasive breast cancer and its impact on survival. Br J Cancer. 2003; 88:574–578. PMID:
12592372.
89. Braun S, Hepp F, Kentenich CR, Janni W, Pantel K, Riethmüller G, et al. Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res. 1999; 5:3999–4004. PMID:
10632331.
90. Adamczyk A, Niemiec J, Ambicka A, Mucha-Małecka A, Ryś J, Mituś J, et al. Survival of breast cancer patients according to changes in expression of selected markers between primary tumor and lymph node metastases. Biomark Med. 2016; 10:219–228. PMID:
26860337.
91. Lim J, Lee KM, Shim J, Shin I. CD24 regulates stemness and the epithelial to mesenchymal transition through modulation of Notch1 mRNA stability by p38MAPK. Arch Biochem Biophys. 2014; 558:120–126. PMID:
24977325.
92. Suyama K, Onishi H, Imaizumi A, Shinkai K, Umebayashi M, Kubo M, et al. CD24 suppresses malignant phenotype by downregulation of SHH transcription through STAT1 inhibition in breast cancer cells. Cancer Lett. 2016; 374:44–53. PMID:
26797459.
93. Chen Y, Song J, Jiang Y, Yu C, Ma Z. Predictive value of CD44 and CD24 for prognosis and chemotherapy response in invasive breast ductal carcinoma. Int J Clin Exp Pathol. 2015; 8:11287–11295. PMID:
26617852.
94. Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces. 2016; 143:532–546. PMID:
27045981.
95. de Beça FF, Caetano P, Gerhard R, Alvarenga CA, Gomes M, Paredes J, et al. Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol. 2013; 66:187–191. PMID:
23112116.
96. Xu H, Tian Y, Yuan X, Liu Y, Wu H, Liu Q, et al. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. Onco Targets Ther. 2016; 9:431–444. PMID:
26855592.
97. Bozorgi A, Khazaei M, Khazaei MR. New findings on breast cancer stem cells: a review. J Breast Cancer. 2015; 18:303–312. PMID:
26770236.
98. Ghosh SK, Pantazopoulos P, Medarova Z, Moore A. Expression of underglycosylated MUC1 antigen in cancerous and adjacent normal breast tissues. Clin Breast Cancer. 2013; 13:109–118. PMID:
23122537.
99. Rajabi H, Alam M, Takahashi H, Kharbanda A, Guha M, Ahmad R, et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene. 2014; 33:1680–1689. PMID:
23584475.
100. Haddon L, Hugh J. MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin Exp Metastasis. 2015; 32:393–403. PMID:
25759211.
101. Heublein S, Mayr D, Egger M, Karsten U, Goletz S, Angele M, et al. Immunoreactivity of the fully humanized therapeutic antibody PankoMab-GEX™ is an independent prognostic marker for breast cancer patients. J Exp Clin Cancer Res. 2015; 34:50. PMID:
25986064.
102. Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C, et al. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene. 2014; 33:3422–3431. PMID:
23912457.
103. Chodosh LA. Expression of BRCA1 and BRCA2 in normal and neoplastic cells. J Mammary Gland Biol Neoplasia. 1998; 3:389–402. PMID:
10819533.
104. Albiges L, André F, Balleyguier C, Gomez-Abuin G, Chompret A, Delaloge S. Spectrum of breast cancer metastasis in BRCA1 mutation carriers: highly increased incidence of brain metastases. Ann Oncol. 2005; 16:1846–1847. PMID:
15972278.
105. Chapa J, An G, Kulkarni SA. Examining the relationship between premalignant breast lesions, carcinogenesis and tumor evolution in the mammary epithelium using an agent-based model. PLoS One. 2016; 11:e0152298. PMID:
27023391.
106. Hynes NE, Stoelzle T. Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Res. 2009; 11:210. PMID:
19849814.
107. Green AR, Aleskandarany MA, Agarwal D, Elsheikh S, Nolan CC, Diez-Rodriguez M, et al. MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours. Br J Cancer. 2016; 114:917–928. PMID:
26954716.
108. Bocca C, Ievolella M, Autelli R, Motta M, Mosso L, Torchio B, et al. Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Expert Opin Ther Targets. 2014; 18:121–135. PMID:
24325753.
109. Du Y, Shi A, Han B, Li S, Wu D, Jia H, et al. COX-2 silencing enhances tamoxifen antitumor activity in breast cancer in vivo and in vitro. Int J Oncol. 2014; 44:1385–1393. PMID:
24535190.
110. Voutsadakis IA. Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation. J Clin Med. 2016; 5:E11. PMID:
26797644.
111. Curtit E, Nerich V, Mansi L, Chaigneau L, Cals L, Villanueva C, et al. Discordances in estrogen receptor status, progesterone receptor status, and HER2 status between primary breast cancer and metastasis. Oncologist. 2013; 18:667–674. PMID:
23723333.
112. Luqmani YA, Alam-Eldin N. Overcoming resistance to endocrine therapy in breast cancer: new approaches to a nagging problem. Med Princ Pract. Epub. 2016; 2. 05. DOI:
10.1159/000444451.
113. Takashima T, Mukai H, Hara F, Matsubara N, Saito T, Takano T, et al. Taxanes versus S-1 as the first-line chemotherapy for metastatic breast cancer (SELECT BC): an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncol. 2016; 17:90–98. PMID:
26617202.
114. Wang X, Yarid N, McMahon L, Yang Q, Hicks DG. Expression of androgen receptor and its association with estrogen receptor and androgen receptor downstream proteins in normal/benign breast luminal epithelium. Appl Immunohistochem Mol Morphol. 2014; 22:498–504. PMID:
24897063.
115. Zhao L, Niu F, Shen H, Liu X, Chen L, Niu Y. Androgen receptor and metastasis-associated protein-1 are frequently expressed in estrogen receptor negative/HER2 positive breast cancer. Virchows Arch. 2016; 468:687–696. PMID:
27026268.
116. Rampurwala M, Wisinski KB, O'Regan R. Role of the androgen receptor in triple-negative breast cancer. Clin Adv Hematol Oncol. 2016; 14:186–193. PMID:
27058032.
117. McNamara KM, Yoda T, Miki Y, Nakamura Y, Suzuki T, Nemoto N, et al. Androgen receptor and enzymes in lymph node metastasis and cancer reoccurrence in triple-negative breast cancer. Int J Biol Markers. 2015; 30:e184–e189. PMID:
25588857.
118. Vici P, Pizzuti L, Natoli C, Gamucci T, Di Lauro L, Barba M, et al. Triple positive breast cancer: a distinct subtype? Cancer Treat Rev. 2015; 41:69–76. PMID:
25554445.
119. Tchafa AM, Ta M, Reginato MJ, Shieh AC. EMT transition alters interstitial fluid flow-induced signaling in ERBB2-positive breast cancer cells. Mol Cancer Res. 2015; 13:755–764. PMID:
25566992.
120. Lee HJ, Kim JY, Park SY, Park IA, Song IH, Yu JH, et al. Clinicopathologic significance of the intratumoral heterogeneity of HER2 gene amplification in HER2-positive breast cancer patients treated with adjuvant trastuzumab. Am J Clin Pathol. 2015; 144:570–578. PMID:
26386078.
121. Wang XZ, Liu Q, Sun JJ, Zuo WS, Hu DW, Ma SG, et al. Correlation between p53 and epidermal growth factor receptor expression in breast cancer classification. Genet Mol Res. 2015; 14:4282–4290. PMID:
25966200.
122. Wendt MK, Williams WK, Pascuzzi PE, Balanis NG, Schiemann BJ, Carlin CR, et al. The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6. Neoplasia. 2015; 17:124–133. PMID:
25622905.
123. Tanei T, Choi DS, Rodriguez AA, Liang DH, Dobrolecki L, Ghosh M, et al. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res. 2016; 18:6. PMID:
26757880.
124. De Andrade JP, Park JM, Gu VW, Woodfield GW, Kulak MV, Lorenzen AW, et al. EGFR is regulated by TFAP2C in luminal breast cancer and is a target for vandetanib. Mol Cancer Ther. 2016; 15:503–511. PMID:
26832794.
125. Flynn JF, Wong C, Wu JM. Anti-EGFR therapy: mechanism and advances in clinical efficacy in breast cancer. J Oncol. 2009; 2009:526963. PMID:
19390622.
126. Tevaarwerk AJ, Kolesar JM. Lapatinib: a small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer. Clin Ther. 2009; 31 Pt 2:2332–2348. PMID:
20110044.
127. Chae YK, Gagliato Dde M, Pai SG, Carneiro B, Mohindra N, Giles FJ, et al. The association between EGFR and cMET expression and phosphorylation and its prognostic implication in patients with breast cancer. PLoS One. 2016; 11:e0152585. PMID:
27055285.
128. An J, Lv J, Li A, Qiao J, Fang L, Li Z, et al. Constitutive expression of Bcl-2 induces epithelial-Mesenchymal transition in mammary epithelial cells. BMC Cancer. 2015; 15:476. PMID:
26091803.
129. Ruibal Á, Aguiar P, Del Río MC, Menéndez P, Arias JI, Herranz M. Positive immunohistochemical expression of bcl-2 in hormone-independent breast carcinomas is associated with a greater lymph node involvement and poor outcome. Med Oncol. 2014; 31:105. PMID:
25008065.
130. Choi JE, Woo SM, Min KJ, Kang SH, Lee SJ, Kwon TK. Combined treatment with ABT-737 and VX-680 induces apoptosis in Bcl-2- and c-FLIP-overexpressing breast carcinoma cells. Oncol Rep. 2015; 33:1395–1401. PMID:
25592064.
131. Weyhenmeyer B, Murphy AC, Prehn JH, Murphy BM. Targeting the anti-apoptotic Bcl-2 family members for the treatment of cancer. Exp Oncol. 2012; 34:192–199. PMID:
23070004.
132. Raica M, Cîmpean AM, Meche A, Alexa A, Suciu C, Mureşan A. Analysis of the immunohistochemical expression of mammaglobin A in primary breast carcinoma and lymph node metastasis. Rom J Morphol Embryol. 2009; 50:341–347. PMID:
19690758.
133. Li C, Zhang T. Human mammaglobin: a specific marker for breast cancer prognosis. J BUON. 2016; 21:35–41. PMID:
27061528.
134. Picot N, Guerrette R, Beauregard AP, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016; 55:1150–1162. PMID:
26207726.
135. Kim SW, Goedegebuure P, Gillanders WE. Mammaglobin-A is a target for breast cancer vaccination. Oncoimmunology. 2016; 5:e1069940. PMID:
27057470.
136. Ferro P, Franceschini MC, Bacigalupo B, Dessanti P, Falco E, Fontana V, et al. Detection of circulating tumour cells in breast cancer patients using human mammaglobin RT-PCR: association with clinical prognostic factors. Anticancer Res. 2010; 30:2377–2382. PMID:
20651396.
137. Bae YK, Choi JE, Kang SH, Lee SJ. Epithelial-mesenchymal transition phenotype is associated with clinicopathological factors that indicate aggressive biological behavior and poor clinical outcomes in invasive breast cancer. J Breast Cancer. 2015; 18:256–263. PMID:
26472976.
138. Brouxhon SM, Kyrkanides S, Teng X, Raja V, O'Banion MK, Clarke R, et al. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clin Cancer Res. 2013; 19:3234–3246. PMID:
23620408.
139. Pula B, Wojnar A, Witkiewicz W, Dziegiel P, Podhorska-Okolow M. Podoplanin expression in cancer-associated fibroblasts correlates with VEGF-C expression in cancer cells of invasive ductal breast carcinoma. Neoplasma. 2013; 60:516–524. PMID:
23790170.
140. Raica M, Cimpean AM, Ribatti D. The role of podoplanin in tumor progression and metastasis. Anticancer Res. 2008; 28:2997–3006. PMID:
19031946.
141. Renart J, Carrasco-Ramírez P, Fernández-Muñoz B, Martín-Villar E, Montero L, Yurrita MM, et al. New insights into the role of podoplanin in epithelial-mesenchymal transition. Int Rev Cell Mol Biol. 2015; 317:185–239. PMID:
26008786.
142. Sriram R, Lo V, Pryce B, Antonova L, Mears AJ, Daneshmand M, et al. Loss of periostin/OSF-2 in ErbB2/Neu-driven tumors results in androgen receptor-positive molecular apocrine-like tumors with reduced Notch1 activity. Breast Cancer Res. 2015; 17:7. PMID:
25592291.