Journal List > J Korean Soc Spine Surg > v.8(3) > 1035976

J Korean Soc Spine Surg. 2001 Sep;8(3):423-427. Korean.
Published online September 30, 2001.  https://doi.org/10.4184/jkss.2001.8.3.423
Copyright © 2001 Korean Society of Spine Surgery
Posterior Instrumentation of Thoracolumbar Fracture
Jin-Young Lee, M.D., and Gab-Lae Kim, M.D.
Department of Orthopedic Surgery, Hallym University College of Medicine, Seoul, Korea.

Address reprint requests to Jin-Young Lee, M.D. Department of Orthopedic Surgery, Hallym University College of Medicine, #445 Kil-dong, Kangdong-gu, Seoul 134-701, Korea. Tel: 82-2-2224-2288, Fax: 82-2-489-4391, Email: jylee@hallym.or.kr
Abstract

The thoracolumbar spine remains the most common site of vertebral column injuries. Surgical stabilization using posterior instrumentation for thoracolumbar injuries offers several advantages such as nearly anatomical reduction of fractures, protection of neurologic function and most important early ambulation of the patient, and so major benefits of early fixation are decreased hospital stay, early rehabilitation, and prevention of deformity and pain. The treatment of fracture-dislocation of the thoracolumbar spine has been progressively improved over the past decades and recently a lot of posterior instrumentation has been introduced to improve fixation of the involved vertebrae three dimensionally and short segmental fixation as possible.

Keywords: Throaclumbar spine; Posterior instrumentation

Figures


Fig. 1
Various types of the "modular construct" in posterior spinal instrumentation.
Click for larger image

References
1. Argenson C, de Peretti F, Lacour C, Puch JM, Cambas PM, Hovorkca E. Burst fractures of the thoraco-lumbar junction treated by the "modular construct" type of the Cotrel-Dubousset device; Presented in European spinal deformities society; Lyon, France. 1992.
2. Bohlman HH, Bahniuk E, Raskulinecz G, Field G. In Mechanical factors affecting recovery from incomplete cervical cord injury:A preliminary report. Johns Hopkins Med J 1979;145:115–125.
3. Boucher HH. A method for spinal fusion. J Bone Joint Surg Br 1957;41:248–259.
4. Cammisa FP, Eismont FJ, Green BA. Dural laceration occuring with burst fracture and associated laminar fracture. J Bone Joint Surg Am 1989;71:1044–1052.
5. Cotrel Y, DuBousset DuBousset J. New segmental posterior instrumentation of the spine; Proceedings at the 19th Annual Meeting of the Scoliosis Research Society; Orlando. 1984.
6. Delamarter RB, Sheman J, Carr JB. Pathophysiology of spinal cord injury: Recovery after immediate and delayed decompression. J Bone Joint Surg Am 1995;77:1042–1049.
7. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983;8:817–831.
8. Dickson JH, Harrington PR, Erwin WD. Results of reduction and stabilization of the severely fractured thoracic and lumbar spine. J Bone Joint Surg Am 1977;59:143–153.
9. Edwards CC, Levine AM. Complications associated with posterior instrumentation in the reament of toracic and lumbar injuries. In: Garfin SR, editor. Complications of spinal surgery. Baltimore: Wilkins; 1989. pp. 164-199.
10. Edwards CC, Levine AM. Early rod-sleeve stabilization of the injured thoracic and lumbar spine. Orthop Clin North Am 1986;17:121–145.
11. Fredrickson BE, Mann MS, Yuan HA, Lubicky JP. Reduction of intracanal fragment in experimental burst fracture. Spine 1988;13:267–271.
12. Kaneda K, Ito M, Taneichi H. Osteoporotic post-traumatic vertebral collapse with neurologic deficits of the thoracolumbar spine; Presented in 6th IMAST; Vancouver, B.C., Canada. 1999.
13. Karlson MK, Hasserius R, Sundgren P, Redllund-Johnell I, Ohlin A. Remodelling of spinal canal deformed by trauma. J Spine Dis 1997;10:157–161.
14. Keene JS, Fischer SP, Vanderby R, Drummond DS, Turski PA. Significance of acute posttraumatic bony encroachment of the neural canal. Spine 1989;14:799–802.
15. Kostuik JP. Anterior spinal cord decompression for lesions of the thoracic and lumbar spine, techniques, new methods of internal fixation results. Spine 1983;8:512–531.
16. Krengel WF III, Anderson PA, Henley MB. Early stabilization and decompression for incomplete paraplegia due to thoracic level spinal cord injury. Spine 1993;18:2080–2087.
17. McBride GG. Cotrel-Kubousset rods in spinal fractures. Paraplegia 1989;27:440–449.
18. Park IH, Lee KB, Park MR, Lee JY, Rhee DY. Treatment of the unstable thoracolumbar fractures using Cotrel-Dubousset instrumentation. J Korean Orthop Assoc 1990;25(1):123–131.
19. Roy-Camile R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop 1988;203:180–191.
20. Sasso RC, Cotler HB. Paosterior instrumentation and fusion for unstable fractures and fracture-dislocations of the thoracic and lumbar spine: A comparative study of three fixation devices in 70 patients. Spine 1993;18:450–460.
21. Steven RG, Alexander RV. In: Orthopaedic Knowledge Update Spine. AAOS; 1997. pp. 208-215.