Journal List > J Korean Soc Spine Surg > v.15(2) > 1035834

Ahn, Lee, Choi, Kim, and Kim: Posterior Lumbar Interbody Fusion with Cage and Local Bone Graft in Spondylolisthesis - Unilateral-caged versus Bilateral-caged -

Abstract

Study Design

Retrospective, controlled study

Objective

To compare one and two-caged posterior lumbar interbody fusion (PLIF) with local bone grafting for spondylolisthesis.

Summary of Literature Review

Even though there are many reports on PLIF using cages and local bone grafting, Studies comparing one and two-caged PLIFs are rare.

Materials and Methods

Sixty-three patients who underwent pedicle screw fixated PLIF using cages and local bone grafts were followed for more than 1 year. Twenty-five patients had one cage (group I), and 38 patients had two cages (group II). Sampling error, disc height, sagittal Cobb angle, coronal Cobb angle, fusion rate, Oswestry disability index (ODI), operation time, blood loss, and neurologic complications were assessed.

Results

There was no sampling error between the two groups, except with regard to diagnosis: degenerative spondylolisthesis, 15 cases in group I and 9 cases in group II; spondylolytic spondylolisthesis, 10 cases in group I and 29 cases in group II (p=0.004). Fusion rates were 87.5% and 88.2% for groups I and II, respectively (p=1.000). More disc height loss occurred in group I (0.6 mm) than in group II (0.0 mm) (p=0.041). Over-3mm-disc height-losses were noted more frequently in group I (20%) than in group II (2.6%) (p=0.022). ODI improved from 28.1 to 12.3 (72.1% improvement) in group I and from 29.2 to 12.7 (79.3% improvement) in group II. There were no significant differences in operation time, amount of blood loss, or neurologic complications between the two groups.

Conclusion

Unilateral one-caged PLIF with local bone grafting and posterior instrumentation was no different from bilateral two-caged PLIF with regard to fusion rates or radiologic or clinical results. The statistically significant differences in disc height seemed to be clinically insignificant. Disc height loss of greater than 3 mm was much more common in group I, with one-caged PLIF.

REFERENCES

1). Okuyama K, Kido T, Unoki E, Chiba M. PLIF with a titanium cage and excised facet joint bone for degenerative spondylolisthesis in augmentation with a pedicle screw. J Spinal Disord Tech. 2007; 20:53–59.
2). Miura Y, Imagama S, Yoda M, Mitsuguchi H, Kachi H. Is local bone viable as a source of bone graft in posterior lumbar interbody fusion? Spine. 2003; 28:2386–2389.
crossref
3). Nah KH, Shin JH, Choi NY, Lee YS, Ha KY. The effect of posterior lumbar interbody fusion after posterolateral fusion in degenerative spondylolisthesis. J Korean Orthop Assoc. 2005; 40:852–860.
crossref
4). Brantigan JW, Neidre A, Toohey JS. The lumbar I/F cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine. 2004; 4:681–688.
crossref
5). Enker P, Steffee AD. Interbody fusion and instrumentation. Clin Orthop Relat Res. 1994; 300:90–101.
crossref
6). Mummaneni PV, Haid RW, Rodts GE. Lumbar interbody fusion: state-of-the-art technical advances. J Neurosurg Spine. 2004; 1:24–30.
crossref
7). Wang ST, Goel VK, Fu CY, et al. Comparison of two interbody fusion cages for posterior lumbar interbody fusion in a cadaveric model. Int Orthop. 2006; 30:299–304.
crossref
8). Brantigan JW. Pseudarthrosis rate after allograft posterior lumbar interbody fusion with pedicle screw and plate fixation. Spine. 1994; 19:1271–1279.
crossref
9). Csecsei GI, Klekner AP, Dobai J, Lajgut A, Sikula J. Posterior interbody fusion using laminectomy bone and transpedicular screw fixation in the treatment of lumbar spondylolisthesis. Surg Neurol. 2000; 53:2–6.
10). Ahn DK, Jeong KW, Lee Song, Choi DJ, Cha SK. Posterior lumbar interbody fusion with chip bone and pedicle screw fixation-comparative study between local chip bone graft and autoiliac chip bone graft. J Korean Orthop Assoc. 2004; 39:614–620.
11). Kai Y, Oyama M, Morooka M. Posterior lumbar interbody fusion using local facet joint autograft and pedicle screw fixation. Spine. 2004; 29:41–46.
crossref
12). Vadapalli S, Robon M, Biyani A, Sairyo K, Khandha A, Goel VK. Effect of lumbar interbody cage geometry on construct stability: a cadaveric study. Spine. 2006; 31:2189–2194.
crossref
13). Asazuma T, Masuoka K, Motosuneya T, Tsuji T, Yasuoka H, Fujikawa K. Posterior lumbar interbody fusion using dense hydroxyapatite blocks and autogenous iliac bone: clinical and radiographic examinations. J Spinal Disord Tech(Suppl). 2005; 18:41–47.
14). Closkey RF, Parsons JR, Lee CK, Blacksin MF, Zimmerman MC. Mechanics of interbody spinal fusion. Analysis of critical bone graft area. Spine. 1993; 18:1011–1015.
15). Prolo DJ, Oklund SA, Butcher M. Toward uniformity in evaluating results of lumbar spine operations. A paradigm applied to posterior lumbar interbody fusions. Spine. 1986; 11:601–606.
16). Fogel GR, Toohey JS, Neidre A, Brantigan JW. Is one cage enough in posterior lumbar interbody fusion: a comparison of unilateral single cage interbody fusion to bilateral cages. J Spinal Disord Tech. 2007; 20:60–65.
crossref
17). Wetzel FT, LaRocca H. The failed posterior lumbar interbody fusion. Spine. 1991; 16:839–845.
crossref
18). Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Siegler S, Albert TJ. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine. 2004; 29:65–70.
19). Heth JA, Hitchon PW, Goel VK, Rogge TN, Drake JS, Torner JC. A biomechanical comparison between anterior and transverse interbody fusion cages. Spine. 2001; 26:261–267.
crossref
20). Godde S, Fritsch E, Dienst M, Kohn D. Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine. 2003; 28:1693–1699.
crossref
21). Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine. 2001; 1:402–407.
22). Tullberg T, Brandt B, Rydberg J, Fritzell P. Fusion rate after posterior lumbar interbody fusion with carbon fiber implant: 1-year follow-up of 51 patients. Eur Spine J. 1996; 5:178–182.
crossref

Fig. 1.
Complete fusin, with solid bony mass around a cage at anteroposterior and lateral view
jkss-15-73f1.tif
Fig. 2.
Probable fusion, with solid bony mass in a cage with small amount of resorption at lateral view.
jkss-15-73f2.tif
Fig. 3.
Nonunion, resorption with invisible bony mass more than 50%
jkss-15-73f3.tif
Fig. 4.
Undecipherable, with insufficient radiologic information, masked by iliac or sacral bone.
jkss-15-73f4.tif
Table 1.
Radiologic classification
Classification Discrimination
Fusion, complete Visible bony mass with trabeculation through vertebral body in anteroposterior and lateral view
Fusion, probable Visible bony mass with trabeculation only in anteroposterior or lateral view with or without small amount of resorption of graft mass
Nonunion Resorbed bone mass more than 50%
Undecipherable Disable to interpretation because of insufficient radiologic information
Table 2.
Demography of sampling errors
  Group I Group II Significance (p value)
No. of Patients 25 38  
Age (years) 56.6±7.92 57.3±9.62 0.593
Sex (M/F) 3/22 11/43 0.495
Medical disease      
Diabetes 2 14 0.738
Thyroid disease 0 12 0.244
Smoking 1 18 0.058
Follow-up (months) 23.2±11.5 21.3±10.2 0.438
Diagnosis (Spondylolisthesis)     0.004
Spondylolytic 10 29  
Degenerative 15 19  
Fusion level     0.710
L3-4 11 12  
L4-5 15 26  
L5-S1 19 10  
Operation times (minutes) 197±282 211±362 0.082
Blood loss (ml) 575±215 615±228 0.485
Neurologic complication 10 10 -

Pearson Chi-Square, others by Mann-Whitney U-test

Table 3.
Radiological and clinical results
  Group I Group II Significance (p value)
Decipherable 24 34 0.933
Fusion, complete 16(66.7%) 23(67.6%)  
Fusion, probable 15(20.8%) 7(20.6%)  
Resorption 13(12.5%) 4(11.8%)  
Undecipherable Oswestry disability index 1 4  
Preoperative 28.1±4.91 129.2±4.01 0.364
Postoperative 12.3±3.61 112.7±3.81 0.768
Recovery rate (%) Disc height (mm) 72.1 79.3  
Preoperative 10.0±2.51 19.1±3.1 0.287
Postoperative 12.6±1.81 12.0±1.4 0.083
Follow-up 11.9±1.61 112.±1.4 0.947
Reduction loss 0.7±1.3 10.0±1.4 0.038
Frequency of disk height loss more than 3 mm Coronal Cobb angle (degree) 5(20.0%) 1(2.6%) 0.022
Preoperative 0.2±2.9 10.8±3.7 0.417
Postoperative 0.4±2.5 10.0±2.6 0.357
Follow-up 0.3±2.8 10.2±2.9 0.734
Reduction loss Frequency of Coronal Cobb angle 0.1±2.3 10.1±1.9 0.280
loss more than 5 degrees Sagittal Cobb angle (degree) 2(8.0%) 1(2.6%) 0.328
Preoperative 10.2±5.01 19.5±7.2 0.746
Postoperative 12.3±3.91 12.9±4.5 0.843
Follow-up 11.9±3.6 12.6±4.6 0.860
Reduction loss 0.4±1.4 10.2±1.4 0.746
Frequency of Sagittal Cobb angle loss more than 5 degrees 5(20.0%) 7(18.4%) 0.876

Pearson Chi-Square, others by Mann-Whitney U-test

Table 4.
Results of variable graft-assemblies
Graft-assembly Authors Fusion rate Clinical result Uniqueness
Allograft Brantigan JW8) 56% 60% Graft failure 28%
Local block bone Csecsei GI9) 95.7% 87% Segmental lordosis loss 2 degrees
Iliac chip bone Ahn DK10) 90% 88.1% Donor site pain 12%
Local chip bone & local block bone Kai Y11) 92.9% 76% Collapsed union 16.7%
Local chip bone Shin BJ12) 57% 79% Difficult radiologic decision 17%
1 cage with local bone Okuyama K1) 100% 86% (Pain) Union 93.5%
      62% (Work) Probable union 6.3%
2 cages with local bone Miura Y2) 100% 76.8% ASD 2 cases
Hydroxyapatite block Asazuma T13) 96.2% - Sinking 23.5%
& Iliac bone block       Cracking of HA block 17.6%

ASD: Adjacent segmental degeneration

TOOLS
Similar articles