Abstract
Degenerative instability is difficult to define, diagnose, and treat. Diagnosis and treatment of degenerative instability are based on the biomechanical stability of the functional spinal unit as well as on the pathologic diagnosis of the disease. Recent advancements in biomechanical studies on the functional spinal unit and radiological diagnostic methods have introduced new diagnostic criteria. In this review, biomechanical stability of the functional spinal unit, changes in stability associated with degeneration and diagnosis, and treatment of degenerative instability are discussed.
REFERENCES
1). Morgan FP, King T. Primary instability of lumbar vertebrae as a common cause of low back pain. J Bone Joint Surg Br. 1957; 39:6–22.
2). Yone K, Sakou T. Usefulness of Posner's definition of spinal instability for selection of surgical treatment for lumbar spinal stenosis. J Spinal Disord. 1999; 12:40–44.
3). Frymoyer JW, Selby DK. Segmental instability. Ratio-nale for treatment. Spine. 1985; 10:280–286.
4). Kirkaldy-Willis WH, Farfan HF. Instability of the lumbar spine. Clin Orthop Relat Res. 1982. 110–123.
5). Kirkaldy-Willis WH, McIvor GW. Editorial: Lumbar spinal stenosis. Clin Orthop Relat Res. 1976. 2–3.
6). Kirkaldy-Willis WH, Wedge JH, Yong-Hing K, Reilly J. Pathology and pathogenesis of lumbar spondylosis and stenosis. Spine. 1978; 3:319–328.
7). Osti OL, Vernon-Roberts B, Fraser RD. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine. 1990; 15:762–767.
8). Kazarian LE. tear characteristics of the human spinal column. Orthop Clin North Am. 1975; 6:3–18.
9). Keller TS, Holm SH, Hansson TH, Spengler DM. 1990 Volvo Award in experimental studies. The depen-dence of intervertebral disc mechanical properties on physiologic conditions. Spine. 1990; 15:751–761.
10). Tamaki T, Panjabi MM. Identification of viscoelastic property of intervertebral disc under flexion, extension and lateral bending. Biomed Mater Eng. 1991; 1:203–214.
11). Koeller W, Funke F, Hartmann F. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. Biorheology. 1984; 21:675–686.
12). Keller TS, Nathan M. Height change caused by creep in intervertebral discs: a sagittal plane model. J Spinal Disord. 1999; 12:313–324.
13). Bass CR, Planchak CJ, Salzar RS, et al. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments. Spine. 2007; 32:E436–442.
14). Panjabi MM. Experimental determination of spinal motion segment behavior. Orthop Clin North Am. 1977; 8:169–180.
15). Parnianpour M, Nordin M, Kahanovitz N, Frankel V. :1988. Volvo award in biomechanics. The triaxial coupling of torque generation of trunk muscles during isometric exertions and the effect of fatiguing isoinertial movements on the motor output and movement patterns. Spine. 1988; 13:982–992.
17). Cholewicki J, Crisco JJ 3rd, Oxland TR, Yamamoto I, Panjabi MM. Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis. Spine. 1996; 21:2421–2428.
18). Keller TS, Colloca CJ, Gunzburg R. Neuromechanical characterization of in vivo lumbar spinal manipulation. Part I. Vertebral motion. J Manipulative Physiol Ther. 2003; 26:567–578.
19). Harrison DE, Harrison DD, Troyanovich SJ. Three-dimensional spinal coupling mechanics: Part I. A review of the literature. J Manipulative Physiol Ther. 1998; 21:101–113.
20). Patwardhan AG, Havey RM, Meade KP, Lee B, Dun-lap B. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine. 1999; 24:1003–1009.
21). Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine. 2001; 26:E557–561.
22). Panjabi M, Henderson G, Abjornson C, Yue J. Multi-directional testing of one- and two-level ProDisc-L versus simulated fusions. Spine. 2007; 32:1311–1319.
23). Demoulin C, Distree V, Tomasella M, Crielaard JM, Vanderthommen M. Lumbar functional instability: a critical appraisal of the literature. Ann Readapt Med Phys. 2007; 50:677–684.
24). Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003; 13:371–379.
25). Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992; 5:390–396. discussion 397.
26). Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology. 2007; 245:62–77.
27). White AA 3rd, Johnson RM, Panjabi MM, South-wick WO. Biomechanical analysis of clinical stability in the cervical spine. Clin Orthop Relat Res. 1975. 85–96.
28). Ochia RS, Inoue N, Takatori R, Andersson GB, An HS. In vivo measurements of lumbar segmental motion during axial rotation in asymptomatic and chronic low back pain male subjects. Spine. 2007; 32:1394–1399.
29). Funk C, Beyer HM, Volle E. [Functional MRT of the LS in an open magnet system-the initial results]. Rofo. 1998; 169:27–32.
30). McGregor AH, Anderton L, Gedroyc WM, Johnson J, Hughes SP. The use of interventional open MRI to assess the kinematics of the lumbar spine in patients with spondylolisthesis. Spine. 2002; 27:1582–1586.
31). Moon S. Biochemical factors of intervertebral disc degeneration: Implications for disc regeneration. Journal of Korean Spine Surg. 2007; 14:120–128.
32). Myklebust JB, Pintar F, Yoganandan N, et al. Tensile strength of spinal ligaments. Spine. 1988; 13:526–531.
33). Adams MA, McMillan DW, Green TP, Dolan P. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine. 1996; 21:434–438.
34). Masuoka K, Michalek AJ, MacLean JJ, Stokes IA, Iatridis JC. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine. 2007; 32:1974–1979.
35). Silva P, Crozier S, Veidt M, Pearcy MJ. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression. J Mater Sci Mater Med. 2005; 16:663–669.
36). Williams JR, Natarajan RN, Andersson GB. Inclusion of regional poroelastic material properties better pre-dicts biomechanical behavior of lumbar discs subjected to dynamic loading. J Biomech. 2007; 40:1981–1987.
37). Hodges PW, Cresswell AG, Daggfeldt K, Thorstens-son A. In vivo measurement of the effect of intra-abdomi-nal pressure on the human spine. J Biomech. 2001; 34:347–353.
38). Perie D, Korda D, Iatridis JC. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech. 2005; 38:2164–2171.
39). Panjabi MM, Brand RA Jr., White AA 3rd. Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am. 1976; 58:642–652.
40). Pope MH, Stokes IA, Moreland M. The biomechanics of scoliosis. Crit Rev Biomed Eng. 1984; 11:157–188.
41). Aubin CE, Dansereau J, de Guise JA, Labelle H. Rib cage-spine coupling patterns involved in brace treatment of adolescent idiopathic scoliosis. Spine. 1997; 22:629–635.
42). Harrison DE, Harrison DD, Troyanovich SJ. Three-dimensional spinal coupling mechanics: Part II. Implications for chiropractic theories and practice. J Manipulative Physiol Ther. 1998; 21:177–186.
43). Plaugher G, Burrow MN. Three-dimensional spinal coupling mechanics–Part II: implications for chiropractic theories and practice. J Manipulative Physiol Ther. 1999; 22:353–355.
44). Keller TS, Colloca CJ, Harrison DE, Harrison DD, Janik TJ. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Spine J. 2005; 5:297–309.
45). Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992; 5:383–389. discussion 397.
46). Patwardhan AG, Havey RM, Ghanayem AJ, et al. Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine. 2000; 25:1548–1554.
47). Wilke HJ, Rohlmann A, Neller S, Graichen F, Claes L, Bergmann G. ISSLS prize winner: A novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experient and in vivo measurements. Spine. 2003; 28:2585–2593.
48). Cloutier LP, Aubin CE, Grimard G. Biomechanical study of anterior spinal instrumentation configurations. Eur Spine J. 2007; 16:1039–1045.
50). Krismer M, Haid C, Ogon M, Behensky H, Wimmer C. [Biomechanics of lumbar instability]. Orthopade. 1997; 26:516–520.
51). Yong-Hing K, Kirkaldy-Willis WH. The pathophysiology of degenerative disease of the lumbar spine. Orthop Clin North Am. 1983; 14:491–504.
52). Soini J, Antti-Poika I, Tallroth K, Konttinen YT, Honkanen V, Santavirta S. Disc degeneration and angular movement of the lumbar spine: comparative study using plain and flexion-extension radiography and discography. J Spinal Disord. 1991; 4:183–187.
53). Murata M, Morio Y, Kuranobu K. Lumbar disc degeneration and segmental instability: a comparison of magnetic resonance images and plain radiographs of patients with low back pain. Arch Orthop Trauma Surg. 1994; 113:297–301.
54). Tanaka N, An HS, Lim TH, Fujiwara A, Jeon CH, Haughton VM. The relationship between disc degeneration and flexibility of the lumbar spine. Spine J. 2001; 1:47–56.
55). Axelsson P, Karlsson BS. Intervertebral mobility in the progressive degenerative process. A radiostereometric analysis. Eur Spine J. 2004; 13:567–572.
56). Panjabi MM, Lydon C, Vasavada A, Grob D, Crisco JJ 3rd, Dvorak J. On the understanding of clinical instability. Spine. 1994; 19:2642–2650.
57). Cook C, Brismee JM, Sizer PS Jr. Subjective and objective descriptors of clinical lumbar spine instability: a Delphi study. Man Ther. 2006; 11:11–21.
58). Grob D, Panjabi M, Dvorak J, et al. [The unstable spine–an “in vitro” and “in vivo study” on better understanding of clinical instability]. Orthopade. 1994; 23:291–298.
59). Soini J, Slatis P, Kannisto M, Sandelin J. External transpedicular fixation test of the lumbar spine correlates with the outcome of subsequent lumbar fusion. Clin Orthop Relat Res. 1993. 89–96.
60). Faraj AA. External fixation in lumbar segmental instability. Acta Orthop Belg. 2003; 69:9–12.
61). Junghanns H. Spondylolisthesis ohne spalt in zwischen-gelenstuck. Arch Orthop Unfall-Chirurg. 1930; 29:118–127.
62). Knuttson F. The instability associated with disc degeneration in the lumbar spine. Acta Radiol. 1944; 25:593–609.
63). Latif AB. [Vacuum phenomenon in the intervertebral disc]. Magy Traumatol Orthop Helyreallito Seb. 1991; 34:297–300.
64). Anda S, Stovring J, Ro M. CT of extraforaminal disc herniation with associated vacuum phenomenon. Neuro-radiology. 1988; 30:76–77.
65). Kloc W. [Gaseous degeneration of the intervertebral disc within the lumbar spine]. Chir Narzadow Ruchu Ortop Pol. 1998; 63:117–122. discussion 123-114.
66). Lang P, Chafetz N, Genant HK, Morris JM. Lumbar spinal fusion. Assessment of functional stability with magnetic resonance imaging. Spine. 1990; 15:581–588.
67). Bram J, Zanetti M, Min K, Hodler J. MR abnormalities of the intervertebral disks and adjacent bone marrow as predictors of segmental instability of the lumbar spine. Acta Radiol. 1998; 39:18–23.
68). Aprill C, Bogduk N. High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol. 1992; 65:361–369.
69). Carragee EJ, Paragioudakis SJ, Khurana S. 2000 Volvo Award winner in clinical studies: Lumbar high-intensity zone and discography in subjects without low back problems. Spine. 2000; 25:2987–2992.
70). Mailleux P, Ghosez JP, Bosschaert P, Malbecq S, Coulier B. [Distension of the inter-facet joints in MRI: and indirect sign of an existing underestimation of spondylolisthesis and canal stenosis]. J Belge Radiol. 1998; 81:283–285.
71). Ben-Galim P, Reitman CA. The distended facet sign: an indicator of position-dependent spinal stenosis and degenerative spondylolisthesis. Spine J. 2007; 7:245–248.
72). Rihn JA, Lee JY, Khan M, et al. Does lumbar facet fluid detected on magnetic resonance imaging correlate with radiographic instability in patients with degenerative lumbar disease? Spine. 2007; 32:1555–1560.
73). Dupuis PR, Yong-Hing K, Cassidy JD, Kirkaldy-Willis WH. Radiologic diagnosis of degenerative lumbar spinal instability. Spine. 1985; 10:262–276.
74). Friberg O. Lumbar instability: a dynamic approach by traction-compression radiography. Spine. 1987; 12:119–129.
75). Pitkanen M, Manninen HI, Lindgrer KA, Turunen M, Airaksinen O. Limited usefulness of traction-compression films in the radiographic diagnosis of lumbar spinal instability. Comparison with flexion-extension films. Spine. 1997; 22:193–197.
76). Lowe RW, Hayes TD, Kaye J, Bagg RJ, Luekens CA. Standing roentgenograms in spondylolisthesis. Clin Orthop Relat Res. 1976. 80–84.
77). Wood KB, Popp CA, Transfeldt EE, Geissele AE. Radiographic evaluation of instability in spondylolisthesis. Spine. 1994; 19:1697–1703.
78). Shaffer WO, Spratt KF, Weinstein J, Lehmann TR, Goel V. 1990 Volvo Award in clinical sciences. The con-sistency and accuracy of roentgenograms for measuring sagittal translation in the lumbar vertebral motion segment. An experimental model. Spine. 1990; 15:741–750.
79). Posner I, White AA 3rd, Edwards WT, Hayes WC. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine. 1982; 7:374–389.
80). Axelsson P, Karlsson BS. Standardized provocation of lumbar spine mobility: three methods compared by radiostereometric analysis. Spine. 2005; 30:792–797.
81). Halldin K, Zoega B, Nyberg P, Karrholm J, Lind BI. The effect of standard lumbar discectomy on segmental motion: 5-year followup using radiostereometry. Int Orthop. 2005; 29:83–87.
82). Johnsson R, Stromqvist B, Aspenberg P. Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine. 2002; 27:2654–2661.
83). Leivseth G, Brinckmann P, Frobin W, Johnsson R, Stromqvist B. Assessment of sagittal plane segmental motion in the lumbar spine. A comparison between dis-tortion-compensated and stereophotogrammetric roent-gen analysis. Spine. 1998; 23:2648–2655.
84). Pellise F, Hernandez A, Vidal X, Minguell J, Martinez C, Villanueva C. Radiologic assessment of all unfused lumbar segments 7.5 years after instrumented posterior spinal fusion. Spine. 2007; 32:574–579.
85). Lerner T, Frobin W, Bullmann V, Schulte T, Brinckmann P, Liljenqvist U. Changes in disc height and pos-teroanterior displacement after fusion in patients with idiopathic scoliosis: a 9-year followup study. J Spinal Disord Tech. 2007; 20:195–202.
86). Teyhen DS, Flynn TW, Bovik AC, Abraham LD. A new technique for digital fluoroscopic video assessment of sagittal plane lumbar spine motion. Spine. 2005; 30:E406–413.
87). Pitkanen M, Manninen H. Sidebending versus flexion-extension radiographs in lumbar spinal instability. Clin Radiol. 1994; 49:109–114.
88). Jinkins JR, Dworkin J. Proceedings of the State-of-the-Art Symposium on Diagnostic and Interventional Radiology of the Spine, Antwerp, September 7, 2002 (Part two). Upright, weight-bearing, dynamic-kinetic MRI of the spine: pMRI/kMRI. Jbr-Btr. 2003; 86:286–293.
89). Fujiwara A, Lim TH, An HS, et al. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine. 2000; 25:3036–3044.
90). Takayanagi K, Takahashi K, Yamagata M, Moriya H, Kitahara H, Tamaki T. Using cineradiography for con-tinuous dynamic-motion analysis of the lumbar spine. Spine. 2001; 26:1858–1865.
91). Bronfort G, Jochumsen OH. The functional radiographic examination of patients with low-back pain: a study of different forms of variations. J Manipulative Physiol Ther. 1984; 7:89–97.
92). McGregor AH, Cattermole HR, Hughes SP. Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion? Spine. 2001; 26:282–286.
93). Resnick DK, Choudhri TF, Dailey AT, et al. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 9: fusion in patients with stenosis and spondylolisthesis. J Neurosurg Spine. 2005; 2:679–685.
94). Kristof RA, Aliashkevich AF, Schuster M, Meyer B, Urbach H, Schramm J. Degenerative lumbar spondylolisthesis-induced radicular compression: nonfusion-related decompression in selected patients without hyper-mobility on flexion-extension radiographs. J Neurosurg. 2002; 97:281–286.
95). Kinoshita T, Ohki I, Roth KR, Amano K, Moriya H. Results of degenerative spondylolisthesis treated with posterior decompression alone via a new surgical approach. J Neurosurg. 2001; 95:11–16.
96). Panjabi M, Malcolmson G, Teng E, Tominaga Y, Henderson G, Serhan H. Hybrid testing of lumbar CHARITE discs versus fusions. Spine. 2007; 32:959–966. discussion 967.
97). SariAli el H, Lemaire JP, Pascal-Mousselard H, Car-rier H, Skalli W. In vivo study of the kinematics in axial rotation of the lumbar spine after total intervertebral disc replacement: longterm results: a 10-14 years follow up evaluation. Eur Spine J. 2006; 15:1501–1510.
98). David T. Longterm results of one-level lumbar arthroplasty: minimum 10-year followup of the CHARITE artificial disc in 106 patients. Spine. 2007; 32:661–666.
99). Freeman BJ, Davenport J. Total disc replacement in the lumbar spine: a systematic review of the literature. Eur Spine J. 2006; 15(Suppl 3):S439–447.
100). Putzier M, Funk JF, Schneider SV, et al. Charite total disc replacement–clinical and radiographical results after an average followup of 17 years. Eur Spine J. 2006; 15:183–195.
101). Punt IM, Visser VM, van Rhijn LW, et al. Complications and reoperations of the SB Charite lumbar disc prosthesis: experience in 75 patients. Eur Spine J. 2007.
102). Zeh A, Planert M, Siegert G, Lattke P, Held A, Hein W. Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc (Medtronic Sofamor Danek). Spine. 2007; 32:348–352.
103). van Ooij A, Kurtz SM, Stessels F, Noten H, van Rhijn L. Polyethylene wear debris and longterm clinical failure of the Charite disc prosthesis: a study of 4 patients. Spine. 2007; 32:223–229.
104). Mehren C, Suchomel P, Grochulla F, et al. Hetero-topic ossification in total cervical artificial disc replacement. Spine. 2006; 31:2802–2806.
105). van Ooij A, Oner FC, Verbout AJ. Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc. J Spinal Disord Tech. 2003; 16:369–383.
106). Christie SD, Song JK, Fessler RG. Dynamic interspinous process technology. Spine. 2005; 30:S73–78.
107). Phillips FM, Voronov LI, Gaitanis IN, Carandang G, Havey RM, Patwardhan AG. Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy. Spine J. 2006; 6:714–722.