1. Soares RO, Fedi AC, Reiter KC, Caierão J, d’Azevedo PA. Correlation between biofilm formation and
gelE, esp, and
agg genes in
Enterococcus spp. Clinical isolates. Virulence. 2014; 5:634–637.
2. Lee Y, Kim YA, Song W, Lee H, Lee HS, Jang SJ, Jeong SH, Hong SG, Yong D, Lee K, Chong Y. KONSAR Group. Recent trends in antimicrobial resistance in intensive care units in Korea. Korean J Nosocomial Infect Control. 2014; 19:29–36.
3. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE. Role of
Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun. 2001; 69:4366–4372.
4. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, Baldassarri L. Survey for virulence determinants among
Enterococcus faecalis isolated from different sources. J Med Microbiol. 2004; 53:13–20.
5. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 1993; 37:2474–2477.
6. Donelli G, Guaglianone E. Emerging role of Enterococcus spp in catheter-related infections: biofilm formation and novel mechanisms of antibiotic resistance. J Vasc Access. 2004; 5:3–9.
7. Duprè I, Zanetti S, Schito AM, Fadda G, Sechi LA. Incidence of virulence determinants in clinical
Enterococcus faecium and
Enterococcus faecalis isolates collected in Sardinia (Italy). J Med Microbiol. 2003; 52:491–498.
8. Facklam RR, Collins MD. Identification of
Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol. 1989; 27:731–734.
9. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995; 33:24–27.
10. Clinical and Labratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 25th informational supplement. Wayne, PA: CLSI;2015. p. M100–S23.
11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18:268–281.
12. Marra A, Dib-Hajj F, Lamb L, Kaczmarek F, Shang W, Beckius G, Milici AJ, Medina I, Gootz TD. Enterococcal virulence determinants may be involved in resistance to clinical therapy. Diagn Microbiol Infect Dis. 2007; 58:59–65.
13. Franz CM, Muscholl-Silberhorn AB, Yousif NM, Vancanneyt M, Swings J, Holzapfel WH. Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol. 2001; 67:4385–4389.
14. Tsikrikonis G, Maniatis AN, Labrou M, Ntokou E, Michail G, Daponte A, Stathopoulos C, Tsakris A, Pournaras S. Differences in biofilm formation and virulence factors between clinical and fecal enterococcal isolates of human and animal origin. Microb Pathog. 2012; 52:336–343.
15. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995; 33:24–27.
16. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H. Development of a multiplex PCR for the detection of
asa1, gelE, cylA, esp, and
hyl genes in enterococci and survey for virulence determinants among European hospital isolates of
Enterococcus faecium
. J Clin Microbiol. 2004; 42:4473–4479.
17. Sharifi Y, Hasani A, Ghotaslou R, Varshochi M, Hasani A, Soroush MH, Aghazadeh M, Milani M. Vancomycin-resistant enterococci among clinical isolates from north-west Iran: identification of therapeutic surrogates. J Med Microbiol. 2012; 61:600–602.
18. Prabaker K, Weinstein RA. Trends in antimicrobial resistance in intensive care units in the United States. Curr Opin Crit Care. 2011; 17:472–479.
19. Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000; 13:686–707.
20. Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, O'Neill G, Day NP. Virulent combinations of adhesin and toxin genes in natural populations of
Staphylococcus aureus
. Infect Immun. 2002; 70:4987–4996.
21. Baldassarri L, Creti R, Recchia S, Pataracchia M, Alfarone G, Orefici G, Campoccia D, Montanaro L, Arciola CR. Virulence factors in enterococcal infections of orthopedic devices. Int J Artif Organs. 2006; 29:402–406.
22. Di Rosa R, Creti R, Venditti M, D'Amelio R, Arciola CR, Montanaro L, Baldassarri L. Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium
. FEMS Microbiol Lett. 2006; 256:145–150.
23. Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE. Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by
Enterococcus faecalis
. Infect Immun. 2004; 72:3658–3663.
24. Johansson D, Rasmussen M. Virulence factors in isolates of
Enterococcus faecalis from infective endocarditis and from the normal flora. Microb Pathog. 2013; 55:28–31.
25. Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, Esp, enhances biofilm formation by
Enterococcus faecalis
. Infect Immun. 2004; 72:6032–6039.
26. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penadés JR, Lasa I. The enterococcal surface protein, Esp, is involved in
Enterococcus faecalis biofilm formation. Appl Environ Microbiol. 2001; 67:4538–4545.
27. Mohamed JA, Murray BE. Lack of correlation of gelatinase production and biofilm formation in a large collection of
Enterococcus faecalis isolates. J Clin Microbiol. 2005; 43:5405–5407.
28. Kafil HS, Mobarez AM. Assessment of biofilm formation by enterococci isolates from urinary tract infections with different virulence profiles. J King Saud Univ Sci. 2015; 27:312–317.
29. Hufnagel M, Koch S, Creti R, Baldassarri L, Huebner J. A putative sugar-binding transcriptional regulator in a novel gene locus in
Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J Infect Dis. 2004; 189:420–430.
30. Xu Y, Murray BE, Weinstock GM. A cluster of genes involved in polysaccharide biosynthesis from
Enterococcus faecalis OG1RF. Infect Immun. 1998; 66:4313–4323.
31. Xu Y, Singh KV, Qin X, Murray BE, Weinstock GM. Analysis of a gene cluster of
Enterococcus faecalis involved in polysaccharide biosynthesis. Infect Immun. 2000; 68:815–823.
32. Dworniczek E, Piwowarczyk J, Bania J, Kowalska-Krochmal B, Walecka E. Seniuk ADolna I, Gościniak G.
Enterococcus in wound infections: virulence and antimicrobial resistance. Acta Microbiol Immunol Hung. 2012; 59:263–269.
33. Ballering KS, Kristich CJ, Grindle SM, Oromendia A, Beattie DT, Dunny GM. Functional genomics of
Enterococcus faecalis: multiple novel genetic determinants for biofilm formation in the core genome. J Bacteriol. 2009; 191:2806–2814.
34. Roberts JC, Singh KV, Okhuysen PC, Murray BE. Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of
Enterococcus faecalis isolates. J Clin Microbiol. 2004; 42:2317–2320.
35. Strzelecki J, Hryniewicz W, Sadowy E. Gelatinase-associated phenotypes and genotypes among clinical isolates of
Enterococcus faecalis in Poland. Pol J Microbiol. 2011; 60:287–292.
36. Nakayama J, Kariyama R, Kumon H. Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of
Enterococcus faecalis in urine. Appl Environ Microbiol. 2002; 68:3152–3155.
37. Domann E, Hain T, Ghai R, Billion A, Kuenne C, Zimmermann K, Chakraborty T. Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic
Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol. 2007; 297:533–539.
38. Eaton TJ, Gasson MJ. Molecular screening of
Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 2001; 67:1628–1635.
39. Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore MS, Charbonné F, Joly B. In vitro adhesive properties and virulence factors of
Enterococcus faecalis strains. Res Microbiol. 2002; 153:75–80.
40. Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes (Basel). 2017; 8:39.