Abstract
Background
Inducible MLSB (macrolide-lincosamide-streptogramin B) resistance in staphylococci is not detected by standard susceptibility test methods. Failure to identify inducible MLSB resistance may lead to clinical failure during clindamycin therapy. We determined the prevalence of inducible MLSB resistance in erythromycin-resistant staphylococcal isolates.
Materials and Methods
We evaluated all 2,792 non-duplicate staphylococcal strains: 1,402 Staphylococcus aureus and 1,390 coagulase-negative staphylococci (CoNS) isolated from May 2008-June 2009 at one-unoversity hospital. Testing for inducible MLSB was accomplished by the disk approximation test (D-test) in accordance with the recommendations of the Clinical and Laboratory Standards Institute (CLSI).
Results
Of the 2,792 staphylococcal isolates, 892 S. aureus isolates and 740 CoNS isolates were resistant to erythromycin. Among the 892 erythromycin-resistant S. aureus isolates, the overall prevalence of inducible MLSB was 21.3% (16.2% of MRSA and 76.3% of methicillin-susceptible S. aureus). Among the 740 erythromycin-resistant CoNS isolates, the overall prevalence of inducible MLSB was 16.5% (16.0% of methicillin-resistant CoNS and 18.7% of methicillin-susceptible CoNS). The D-test was positive in 88.8% of S. aureus and 28.4% of CoNS isolates, which were erythromycin-resistant and clindamycin-susceptible.
References
1. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol. 2003. 41:4740–4744.
2. O'Sullivan MV, Cai Y, Kong F, Zeng X, Gilbert GL. Influence of disk separation distance on accuracy of the disk approximation test for detection of inducible clindamycin resistance in Staphylococcus spp. J Clin Microbiol. 2006. 44:4072–4076.
3. Steward CD, Raney PM, Morrell AK, Williams PP, McDougal LK, Jevitt L, McGowan JE Jr, Tenover FC. Testing for induction of clindamycin resistance in erythromycin-resistant isolates of Staphylococcus aureus. J Clin Microbiol. 2005. 43:1716–1721.
4. Patel M, Waites KB, Moser SA, Cloud GA, Hoesley CJ. Prevalence of inducible clindamycin resistance among community - and hospital-associated Staphylococcus aureus isolates. J Clin Microbiol. 2006. 44:2481–2484.
5. Cetin ES, Gunes H, Kaya S, Aridogan BC, Demirci M. Macrolide-lincosamide-streptogramin B resistance phenotypes in clinical staphylococcal isolates. Int J Antimicrob Agents. 2008. 31:364–368.
6. Aktas Z, Aridogan A, Kayacan CB, Aydin D. Resistance to macrolide, lincosamide and streptogramin antibiotics in staphylococci isolated in Istanbul, Turkey. J Microbiol. 2007. 45:286–290.
7. Lewis JS 2nd, Jorgensen JH. Inducible clindamycin resistance in Staphylococci: should clinicians and microbiologists be concerned? Clin Infect Dis. 2005. 40:280–285.
8. Jorgensen JH, Crawford SA, McElmeel ML, Fiebelkorn KR. Detection of inducible clindamycin resistance of staphylococci in conjunction with performance of automated broth susceptibility testing. J Clin Microbiol. 2004. 42:1800–1802.
9. Siberry GK, Tekle T, Carroll K, Dick J. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003. 37:1257–1260.
10. Frank AL, Marcinak JF, Mangat PD, Tjhio JT, Kelkar S, Schreckenberger PC, Quinn JP. Clindamycin treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatr Infect Dis J. 2002. 21:530–534.
11. Drinkovic D, Fuller ER, Shore KP, Holland DJ, Ellis-Pegler R. Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J Antimicrob Chemother. 2001. 48:315–316.
12. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement. CLSI document M100-S19. 2009. Wayne, PA: Clinical and Laboratory Standards Institute.
13. Lim JA, Kwon AR, Kim SK, Chong Y, Lee K, Choi EC. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J Antimicrob Chemother. 2002. 49:489–495.
14. Uh Y, Hwang GY, Jang IH, Kwon O, Yoon KJ, Kim HY. Distributions of macrolide-lincosamide-streptogramin B resistance phenotypes in clinical isolates of staphylococci. Korean J Clin Microbiol. 2008. 11:78–83.
15. Kim HB, Lee B, Jang HC, Kim SH, Kang CI, Choi YJ, Park SW, Kim BS, Kim EC, Oh MD, Choe KW. A high frequency of macrolide-lincosamide-streptogramin resistance determinants in Staphylococcus aureus isolated in South Korea. Microb Drug Resist. 2004. 10:248–254.
16. Kim JS, Kim HS, Song W, Cho HC, Lee KM, Kim EC. Antimicrobial resistance profiles of Staphylococcus aureus isolated in 13 Korean hospitals. Korean J Lab Med. 2004. 24:223–229.
17. Bémer P, Juvin ME, Corvec S, Ros A, Drugeon H. Correlation of agar dilution and VITEK2 system for detection of resistance to macrolides, lincosamides and pristinamycin among Staphylococcus aureus and Staphylococcus epidermidis association with genotypes. Clin Microbiol Infect. 2005. 11:656–661.
18. Chavez-Bueno S, Bozdogan B, Katz K, Bowlware KL, Cushion N, Cavuoti D, Ahmad N, McCracken GH Jr, Appelbaum PC. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas, Texas. Antimicrob Agents Chemother. 2005. 49:2283–2288.
19. Otsuka T, Zaraket H, Takano T, Saito K, Dohmae S, Higuchi W, Yamamoto T. Macrolide-lincosamide-streptogramin B resistance phenotypes and genotypes among Staphylococcus aureus clinical isolates in Japan. Clin Microbiol Infect. 2007. 13:325–327.
20. Daurel C, Huet C, Dhalluin A, Bes M, Etienne J, Leclercq R. Differences in potential for selection of clindamycin-resistant mutants between inducible erm (A) and erm (C) Staphylococcus aureus genes. J Clin Microbiol. 2008. 46:546–550.