Journal List > J Korean Acad Prosthodont > v.54(3) > 1034870

Moon, Lee, and Lee: Shear bond strength of dental CAD-CAM hybrid restorative materials repaired with composite resin

Abstract

Purpose

This study was performed in order to assess the effect of the surface treatment methods and the use of bonding agent on the shear bond strength (SBS) between the aged CAD-CAM (computer aided design-computer aided manufacturing) hybrid materials and added composite resin.

Materials and methods

LAVA Ultimate (LU) and VITA ENAMIC (VE) specimens were age treated by submerging in a 37℃ water bath filled with artificial saliva (Xerova solution) for 30 days. The surface was ground with #220 SiC paper then the specimens were divided into 9 groups according to the combination of the surface treatment (no treatment, grinding, air abrasion with aluminum oxide, HF acid) and bonding agents (no bonding, Adper Single Bond 2, Single Bond Universal). Each group had 10 specimens. Specimens were repaired (added) using composite resin (Filtek Z250), then all the specimens were stored for 7 days in room temperature distilled water. SBS was measured and the fractured surfaces were observed with a scanning electron microscope (SEM). One-way ANOVA and Scheffe test were used for statistical analysis (α =.05).

Results

Mostly groups with bonding agent treatment showed higher SBS than groups without bonding agent. Among the groups without bonding agent the groups with aluminum oxide treatment showed higher SBS. However there was no significant difference between groups except two subgroups within LU group, which revealed a significant increase of SBS when Single Bond Universal was used on the ground LU specimen.

Conclusion

The use of bonding agent when repairing an aged LAVA Ultimate restoration is recommended. (J Korean Acad Prosthodont 2016;54:193-202)

REFERENCES

1.He LH., Purton D., Swain M. A novel polymer infiltrated ceramic for dental simulation. J Mater Sci Mater Med. 2011. 22:1639–43.
crossref
2.Kim HC. Ceramic materials for chair side CAD/CAM. J Korean Acad Esthet Dent. 2014. 23:16–26.
crossref
3.Kurbad A., Kurbad S. A new, hybrid material for minimally invasive restorations in clinical use. Int J Comput Dent. 2013. 16:69–79.
4.Rocca GT., Bonnafous F., Rizcalla N., Krejci I. A technique to improve the esthetic aspects of CAD/CAM composite resin restorations. J Prosthet Dent. 2010. 104:273–5.
crossref
5.Frankenberger R., Hartmann VE., Krech M., Krämer N., Reich S., Braun A., Roggendorf M. Adhesive luting of new CAD/CAM materials. Int J Comput Dent. 2015. 18:9–20.
6.Lee JY., Im EB. A shear bond strength of resin cements bonded to pressable porcelain with various surface treatments. J Korean Acad Prosthodont. 2003. 41:379–86.
7.Kang HS., Choi HY. A study on the bond strength of repair resin to the surface treated composite resins. J Korean Acad Cons Dent. 1995. 20:487–507.
8.Amaral R., Ozcan M., Bottino MA., Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater. 2006. 22:283–90.
crossref
9.Lee YG., Moon SR., Cho YG. Effect of cutting instruments on the dentin bond strength of a self-etch adhesive. J Korean Acad Cons Dent. 2010. 35:13–9.
crossref
10.Lee CW., Kim JW., Lee SH. A study on microleakage of composite resin after surface treatment. J Korean Acad Pediatr Dent. 1998. 25:103–15.
11.Ozcan M. Evaluation of alternative intra-oral repair techniques for fractured ceramic-fused-to-metal restorations. J Oral Rehabil. 2003. 30:194–203.
12.Stawarczyk B., Krawczuk A., Ilie N. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic. Clin Oral Investig. 2015. 19:299–308.
crossref
13.Daniels MW., Francis LF. Silane adsorption behavior, microstructure, and properties of glycidoxypropyltrimethoxysi-lane-modified colloidal silica coatings. J Colloid Interface Sci. 1998. 205:191–200.
crossref
14.Ozcan M. The use of chairside silica coating for different dental applications: a clinical report. J Prosthet Dent. 2002. 87:469–72.
15.Egilmez F., Ergun G., Cekic-Nagas I., Vallittu PK., Ozcan M., Lassila LV. Effect of surface modification on the bond strength between zirconia and resin cement. J Prosthodont. 2013. 22:529–36.
crossref
16.Swift EJ Jr., Cloe BC., Boyer DB. Effect of a silane coupling agent on composite repair strengths. Am J Dent. 1994. 7:200–2.
17.Brosh T., Pilo R., Bichacho N., Blutstein R. Effect of combinations of surface treatments and bonding agents on the bond strength of repaired composites. J Prosthet Dent. 1997. 77:122–6.
crossref
18.Hisamatsu N., Atsuta M., Matsumura H. Effect of silane primers and unfilled resin bonding agents on repair bond strength of a prosthodontic microfilled composite. J Oral Rehabil. 2002. 29:644–8.
crossref
19.Ru ME. Influence of artificial saliva contamination on bonding of dentin adhesives to dentin. J Korean Acad Cons Dent. 1992. 17:383–97.
20.Flores S., Charlton DG., Evans DB. Repairability of polyacid-modified composite resin. Oper Dent. 1995. 20:191–6.
21.Lauvahutanon S., Takahashi H., Shiozawa M., Iwasaki N., Asakawa Y., Oki M., Finger WJ., Arksornnukit M. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014. 33:705–10.
crossref
22.Frankenberger R., Hartmann VE., Krech M., Krämer N., Reich S., Braun A., Roggendorf M. Adhesive luting of new CAD/CAM materials. Int J Comput Dent. 2015. 18:9–20.

Fig. 1.
Dental CAD-CAM hybrid block. (A) LAVA Ultimate, (B) VITA ENAMIC.
jkap-54-193f1.tif
Fig. 2.
Means and standard deviations of shear bond strength of experimental groups with marks denoting statistical significance (∗ denotes P < .05).
jkap-54-193f2.tif
Fig. 3.
Prevalence of failure modes after shear bond strength test (LAVA Ultimate).
jkap-54-193f3.tif
Fig. 4.
Prevalence of failure modes after shear bond strength test (VITA ENAMIC).
jkap-54-193f4.tif
Fig. 5.
Prevalence of failure modes after shear bond strength test (Porcelain).
jkap-54-193f5.tif
Fig. 6.
Scanning electron microscopic photomicrograph of polished surface of specimens before aging (×20,000 magnification). (A) LAVA Ultimate, (B) VITA ENAMIC.
jkap-54-193f6.tif
Fig. 7.
Scanning electron microscopic photomicrograph of specimens after artificial aging by submerging in artificial saliva for 1 month (×20,000 magnification). (A) LAVA Ultimate, (B) VITA ENAMIC.
jkap-54-193f7.tif
Fig. 8.
Scanning electron microscopic photomicrograph of specimens after #220 SiC paper grinding (×20,000 magnification). (A) LAVA Ultimate, (B) VITA ENAMIC.
jkap-54-193f8.tif
Fig. 9.
Scanning electron microscopic photomicrograph of specimens after aluminum oxide abrasion and ultrasonic cleaning (×20,000 magnification). (A) LAVA Ultimate, (B) VITA ENAMIC.
jkap-54-193f9.tif
Fig. 10.
Scanning electron microscopic photomicrograph of specimens after HF acid etching for 1 minute (×20,000 magnification). (A) LAVA Ultimate, (B) VITA ENAMIC.
jkap-54-193f10.tif
Table 1.
Base and repair material in this study
Material Shade Composition Filler (% content) Manufacturer
LAVA Ultimate A3 Polymer with approx.
80 wt% inorganic filler
Nanoparticle cluster (80 wt%)-resin 3M ESPE,
St. Paul, MN, USA
VITA ENAMIC A3 Fine-structure feldspathic ceramic 86 wt%,
Polymer 14 wt%
Fine ceramic network (86 wt%)-PMMA Vita Zahnfabrik,
Bad Säckingen, Germany
CERABIEN ZR A3 Feldspathic glass ceramic   Kuraray Noritake Dental Inc.,
Nagoya, Japan
Filtek Z250 A1 Bis-GMA, Bis-EMA Silica, zirconium oxide 3M ESPE,
St. Paul, MN, USA
Table 2.
Material compositions used for surface treatment in this study
Material Composition Manufacturer
Cobra No.1594-1205 50 ㎛ aluminum oxide Renfert GmbH, Hilzinger, Germany
4% PORCELAIN ETCHANT 4% Hydrofluoric acid Bisco, Inc., Schaumberg, IL, USA
Adper Single Bond 2 Bis-GMA, HEMA, Dimethacrylates, Polyalkenoic acid copolymer, Ethanol, Water 3M ESPE, St. Paul, MN, USA
Single Bond Universal MDP phosphate monomer, DM, HEMA, Vitrebond copolymer, Filler, Ethanol, Water, Silane 3M ESPE, St. Paul, MN, USA
Table 3.
Composition of artificial saliva (Xerova solution) per 100 mL
Calcium Chloride Hydrate 15 mg
Carboxymethylcellulose Sodium 1 g
Dibasic Potassium Phosphate 34 mg
D-Sorbitol 3 g
Magnesium Chloride 5 mg
Potassium Chloride 120 mg
Sodium Chloride 84 mg
Table 4.
Summary of surface treatment protocols for each group
Group   Surface treatment N
1 LU 1 SiC paper 10
VE 1 10
2 LU 2 SiC paper + Adper Single Bond 2 10
VE 2 10
3 LU 3 SiC paper + Single Bond Universal 10
VE 3 10
4 LU 4 SiC paper + Air abrasion(aluminum oxide) 10
VE 4 10
5 LU 5 SiC paper + Air abrasion(aluminum oxide) + Adper Single Bond 2 10
VE 5 10
6 LU 6 SiC paper + Air abrasion(aluminum oxide) + Single Bond Universal 10
VE 6 10
7 LU 7 SiC paper + HF etching 10
VE 7 10
Po 7 10
8 LU 8 SiC paper + HF etching + Adper Single Bond 2 10
VE 8 10
Po 8 10
9 LU 9 SiC paper + HF etching + Single Bond Universal 10
VE 9 10
Po 9 10

LU; LAVA Ultimate, VE; VITA ENAMIC, Po; Porcelain (CZR)

Table 5.
Descriptive statistics for the shear bond strength test (Unit: MPa)
Material/surfaces
treatment
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9
SiC paper no.220
Aluminum oxide
Non Non
S.B.2
S.B.U Non S.B.2 S.B.U Non HF acid
S.B.2
S.B.U
LU LU1 LU2 LU3 LU4 LU5 LU6 LU7 LU8 LU9
0.01 3.75 12.76 2.59 3.96 4.95 0.27 3.57 6.28
(± 0.01) (± 1.26) (± 12.48) (± 3.72) (± 2.88) (± 2.86) (± 0.43) (± 4.96) (± 3.34)
VE VE1 VE2 VE3 VE4 VE5 VE6 VE7 VE8 VE9
0.61 4.47 6.4 4.06 9.77 9.42 0.62 7.36 6.16
(± 0.42) (± 1.88) (± 4.14) (± 3.84) (± 7.95) (± 9.11) (± 0.54) (± 8.53) (± 3.34)
Po             Po7 Po8 Po9
            0.37 1.84 3.19
            (± 0.44) (± 0.82) (± 2.65)

LU: LAVA Ultimate, VE: VITA ENAMIC, Po: Porcelain, S.B.2: Adper Single Bond 2, S.B.U: Single Bond Universal

Highest values in each material.

Table 6.
The result of one-way ANOVA for experimental groups
Source Sum of Squares df Mean Square F Sig.
Between 2433.900 20 121.695 5.277 .000
Within 4358.793 189 23.062    
Total 6792.693 209      
TOOLS
Similar articles