Journal List > J Korean Acad Prosthodont > v.51(2) > 1034771

Kim, Seo, Ahn, Park, and Song: The effect of surface treatment conditioning on shear bond strength between zirconia and dental resin cements

Abstract

Purpose

The purpose of this study was to evaluate the effect of surface treatment on the shear bond strength of zirconia ceramic to 3 resin cements.

Materials and methods

A total of 143 disk-shaped Zirconia blocks (HASS Co., Gangneung, Korea) were randomly divided into three treatment groups: (1) only 50 ㎛ Al2O3 sandblasting, (2) 50 ㎛ Al2O3 sandblast and zircona liner, (3) 50 ㎛ Al2O3 sandblasting and Rocatec (3M ESPE, Seefeld, Germany). Bistite II (Tokuyama Dental Co., Japan), Panavia F (Kuraray Medical, Japan), and Superbond C&B (Sun Medical, Japan) were used to cement onto the zirconia. After 24h of storage in distilled water, shear bond strength was evaluated. High value group was re-tested after thermocycling at 5,000 cycles(5-55℃). Shear bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and Post Hoc Test (α =.05). Shear bond strength data before and after thermocycling were analyzed with Independent sample T test (α =.05).

Results

Super-bond C&B treated with Rocatec showed the most high shear bond strength. Super-bond C&B groups resulted in significantly higher than other cement groups (P<.05). Rocatec groups resulted in significantly higher than other surface treatment groups (P<.05). Shear bond strength has increased in Panavia F treated with Zirconia liner (P<.05). After thermocycling, shear bond strength was increased in Super-bond C&B treated with Rocatec but decreased in other groups (P<.05).

Conclusion

Super-bond C&B cement resulted the highest shear bond strength and Rocatec system enhanced the shear bond strength. After thermocycling, shear bond strength has decreased in most resin cements except Super-bond C&B treated with Rocatec. (J Korean Acad Prosthodont 2013;51:73-81)

REFERENCES

1.Anusavice KJ. Recent developments in restorative dental ceramics. J Am Dent Assoc. 1993. 124:72–4. 76-8, 80-4.
crossref
2.Kelly JR., Nishimura I., Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent. 1996. 75:18–32.
crossref
3.Brentel AS., Ozcan M., Valandro LF., Alarça LG., Amaral R., Bottino MA. Microtensile bond strength of a resin cement to feld-pathic ceramic after different etching and silanization regimens in dry and aged conditions. Dent Mater. 2007. 23:1323–31.
crossref
4.Kra¨mer N., Frankenberger R. Clinical performance of bonded leucite-reinforced glass ceramic inlays and onlays after eight years. Dent Mater. 2005. 21:262–71.
5.Piconi C., Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999. 20:1–25.
crossref
6.Ozcan M., Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater. 2003. 19:725–31.
7.Blatz MB., Sadan A., Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent. 2003. 89:268–74.
crossref
8.De′rand P., De′rand T. Bond strength of luting cements to zirconium oxide ceramics. Int J Prosthodont. 2000. 13:131–5.
9.Tsuo Y., Yoshida K., Atsuta M. Effects of alumina-blasting and adhesive primers on bonding between resin luting agent and zirconia ceramics. Dent Mater J. 2006. 25:669–74.
crossref
10.Derand T., Molin M., Kleven E., Haag P., Karlsson S. Bond strength of luting materials to ceramic crowns after different surface treatments. Eur J Prosthodont Restor Dent. 2008. 16:35–8.
11.Blatz MB., Sadan A., Martin J., Lang B. In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. J Prosthet Dent. 2004. 91:356–62.
crossref
12.Kern M., Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater. 1998. 14:64–71.
crossref
13.Wegner SM., Kern M. Long-term resin bond strength to zirconia ceramic. J Adhes Dent. 2000. 2:139–47.
14.Kitayama S., Nikaido T., Maruoka R., Zhu L., Ikeda M., Watanabe A., Foxton RM., Miura H., Tagami J. Effect of an internal coating technique on tensile bond strengths of resin cements to zirconia ceramics. Dent Mater J. 2009. 28:446–53.
crossref
15.Valandro LF., Ozcan M., Amaral R., Vanderlei A., Bottino MA. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic: microtensile versus shear test. Dent Mater J. 2008. 27:849–55.
16.Valandro LF., Ozcan M., Bottino MC., Bottino MA., Scotti R., Bona AD. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: the effect of surface conditioning. J Adhes Dent. 2006. 8:175–81.
17.Chai J., Chu FC., Chow TW. Effect of surface treatment on shear bond strength of zirconia to human dentin. J Prosthodont. 2011. 20:173–9.
crossref
18.Akyil MS., Uzun IH., Bayindir F. Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed Laser Surg. 2010. 28:801–8.
19.Blatz MB., Chiche G., Holst S., Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int. 2007. 38:745–53.
20.Amaral R., Ozcan M., Valandro LF., Balducci I., Bottino MA. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions. J Biomed Mater Res B Appl Biomater. 2008. 85:1–9.
crossref
21.Smith RL., Villanueva C., Rothrock JK., Garcia-Godoy CE., Stoner BR., Piascik JR., Thompson JY. Long-term microten-sile bond strength of surface modified zirconia. Dent Mater. 2011. 27:779–85.
crossref
22.Ural C., Ku¨lu¨nk T., Ku¨lu¨nk S., Kurt M., Baba S. Determination of resin bond strength to zirconia ceramic surface using different primers. Acta Odontol Scand. 2011. 69:48–53.
crossref
23.Kern M., Barloi A., Yang B. Surface conditioning influences zirconia ceramic bonding. J Dent Res. 2009. 88:817–22.
crossref
24.Aboushelib MN., Matinlinna JP., Salameh Z., Ounsi H. Innovations in bonding to zirconia-based materials: Part I. Dent Mater. 2008. 24:1268–72.
crossref
25.Aboushelib MN., Mirmohamadi H., Matinlinna JP., Kukk E., Ounsi HF., Salameh Z. Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions. Dent Mater. 2009. 25:989–93.
crossref
26.Mirmohammadi H., Aboushelib MN., Salameh Z., Feilzer AJ., Kleverlaan CJ. Innovations in bonding to zirconia based ceramics: Part III. Phosphate monomer resin cements. Dent Mater. 2010. 26:786–92.
crossref
27.Kulunk S., Kulunk T., Ural C., Kurt M., Baba S. Effect of air abrasion particles on the bond strength of adhesive resin cement to zirconia core. Acta Odontol Scand. 2011. 69:88–94.
crossref
28.Phark JH., Duarte S Jr., Blatz M., Sadan A. An in vitro evaluation of the long-term resin bond to a new densely sintered high-purity zirconium-oxide ceramic surface. J Prosthet Dent. 2009. 101:29–38.
crossref
29.Karakoca S., Yilmaz H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics. J Biomed Mater Res B Appl Biomater. 2009. 91:930–7.
crossref
30.Parsa RZ., Goldstein GR., Barrack GM., LeGeros RZ. An in vitro comparison of tensile bond strengths of noble and base metal alloys to enamel. J Prosthet Dent. 2003. 90:175–83.
crossref
31.Ozcan M., Nijhuis H., Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J. 2008. 27:99–104.
32.Yoshida K., Taira Y., Matsumura H., Atsuta M. Effect of adhesive metal primers on bonding a prosthetic composite resin to metals. J Prosthet Dent. 1993. 69:357–62.

Fig. 1.
Disk-shaped zirconia specimen.
jkap-51-73f1.tif
Fig. 2.
Bonded resin cement to zirconia specimen.
jkap-51-73f2.tif
Fig. 3.
Schematic diagram of shear bond strength testing.
jkap-51-73f3.tif
Fig. 4.
Mean shear bone strength by surface treatment (MPa).
jkap-51-73f4.tif
Fig. 5.
Mean shear bone strength by resin cement (MPa).
jkap-51-73f5.tif
Table 1.
Resin cements used in this study
Material Composition Manufacture
Bistite II Paste A NPGDMA, Bis-MPEPP, Silica-zirconia filler, Other Tokuyama Dental Co., Tokyo, Japan
Paste B MAC-10, BPO, CQ, Silica-zirconia filler, Other
Panavia F2.0 Paste A Methacrylate, MDP, Quartz-glass, Microfiller, Photoinitiator Kuraray Medical, Tokyo, Japan
Paste B Methacrylate, Barium glass, Sodium fluoride, Chemical initiator
Liquid MMA, 4-META
Superbond C&B Powder PMMA Sun Medical, Moriyama, Japan
  Catalyst Tri-n-butylborane  

∗NPGDMA: Neopentylglycol dimethacrylate; Bis-MPEPP: 2,2-Bis-(4-methacryloxypolyethoxy phenyl) propane; MAC-10: 11-Methacryloxyundecane-1,1-dicarboxylic acid; BPO: Benzoyl peroxide; CQ: d,l-Camphorquinone; MDP: 10-Methacryloyloxydecyl dihydrogen phosphate; MMA: methyl methacrylate; 4-META: 4-methacryloy-loxyethyltrimellitate anhydride; PMMA: polymethyl methacrylate.

Table 2.
Primers & zirconia liner used in this study
Material   Composition Manufacture
Tokuso Ceramic Primer   Silane coupling agent, phosphate ester monomer, alcohol Tokuyama Dental Co., Tokyo, Japan
Clearfil Ceramic Primer   3-Trimethoxysilylpropyl, methacrylate, MDP, ethanol Kuraray Medical, Tokyo, Japan
Porcelain Liner M Liquid A Liquid B A MMA, 4-META, Stabilizer B MMA, Silane coupling agent, Stabilizer Sun Medical, Moriyama, Japan
Zirconia Liner Liquid A Liquid B A MMA, 4-META B MMA, γ -MPTS Sun Medical, Moriyama, Japan

∗γ -MPTS: 1-propanol, 3-(trimethoxysilyl)-methacrylate.

Table 3.
Experimental groups used in this study
Group Thermocycling Surface treatment Cement
SaBis     Bistite II
SaPan   only sandblast Panavia F2.0
SaSup     Super-bond C&B
ZLBis     Bistite II
ZLPan No sandblast + zirconia liner Panavia F2.0
ZLSup     Super-bond C&B
RoBis     Bistite II
RoPan   sandblast + Rocatec +silane Panavia F2.0
RoSup     Super-bond C&B
T-SaSup   only sandblast Super-bond C&B
T-RoBis T-RoPan Yes sandblast + Rocatec + silane Bistite II Panavia F2.0
T-RoSup     Super-bond C&B

∗Sa: sandblast, ZL: zirconia liner, Ro: Rocatec, T: thermocycling, Bis: Bistite II, Pan: Panavia F2.0, Sup: Super-bond C&B.

Table 4.
The mean ± SD of shear bond strength in each group (MPa)
Group Mean (MPa) SD Minimum (MPa) Maximum (MPa)
SaBis 3.56 0.9 2.43 5.38
SaPan 7.39 1.04 5.79 9.14
SaSup 11.74 0.65 10.83 12.85
ZLBis 3.39 0.53 2.49 4.29
ZLPan 9.74 2.06 6.42 13.31
ZLSup 8.63 1.5 6.02 10.62
RoBis 7.35 1.55 5.75 9.74
RoPan 10.09 2.16 7.88 15.26
RoSup 12.25 0.48 11.66 13.13
T-SaSup 0.00 0.00 0.00 0.00
T-RoBis 3.23 0.21 2.87 3.55
T-RoPan 0.00 0.00 0.00 0.00
T-RoSup 14.05 1.73 11.07 15.99
Table 5.
Tukey HSD test for shear bond strength according to resin cements of each surface treatment group
Surface treatment Resin cement (1) Resin cement (2) Mean Differenece (1-2)(MPa) S.E. P-value
Sandblast Bistite II Panavia F2.0 -3.83 10.84 .000
Superbond C&B -8.18 10.84 .000
Panavia F2.0 Superbond C&B -4.35 10.59 .000
Panavia F2.0 -6.35 19.01 .000
Zirconia liner Bistite II Superbond C&B -5.24 18.57 .000
  Panavia F2.0 Superbond C&B 1.11 18.57 .226
Panavia F2.0 -2.74 19.67 .001
Rocatec Bistite II Superbond C&B -4.90 19.67 .000
  Panavia F2.0 Superbond C&B -2.16 19.67 .010
Table 6.
Tukey HSD test for shear bond strength according to surface treatments of each resin cement group
Resin cement Surface treatment (1) Surface treatment (2) Mean Differenece (1-2)(MPa) S.E. P-value
Bistite II Sandblast Zirconia liner 0.17 13.65 .932
Rocatec -3.80 13.65 .000
  Zirconia liner Rocatec -3.97 13.65 .000
Panavia F2.0 Sandblast Zirconia liner -2.34 22.27 .016
Rocatec -2.70 22.27 .005
  Zirconia liner Rocatec -0.35 22.79 .899
Superbond C&B Sandblast Zirconia liner 3.12 11.95 .000
Rocatec -0.51 12.25 .404
  Zirconia liner Rocatec -3.62 12.25 .000
Table 7.
Two-way ANOVA with resin cement and surface treatment
Source DF Sum of Squares Mean Square F value P value
Resin cement 2 485670.11 242835.06 169.017 .000
Surface treatment 2 103285.23 51642.61 35.944 .000
Resin cement ∗Surface treatment 4 79510.99 19877.75 13.835 .000
Error 84 120687.00 1436.75    
Correted Total 92 783188.50      
Table 8.
Independent t-test of shear bond strength before and after thermocycling
Group N Mean (MPa) SD t P-value
RoBis 11 7.35 1.55    
T-RoBis 11 3.23 0.21 8.257 .000
RoSup 11 12.25 0.48    
T-RoSup 11 14.05 1.73 -2.639 .025
TOOLS
Similar articles