Journal List > J Korean Acad Prosthodont > v.49(1) > 1034685

Lee, Kim, Pae, and Woo: Influence of sandblasting and primer on shear bond strength of resin cement to zirconia

Abstract

Purpose

The aim of this study was to evaluate the effect of mechanical, chemical surface treatments on the zirconia-to-resin cement shear bond strength (SBS).

Materials and methods

Eighty zirconia discs (Lava, 3M ESPE) and eighty zirconia/alumina composite (Zirace, Acucera) were embedded in an epoxy resin base. Zirconia discs were randomly divided in to four treatment groups(10 for each manufacturer): 50 μ m Al2O3 sandblasting (S50),110 μ m Al2O3 sandblasting (S110), 50 μ m Al2O3 and primer (Z-Prime Plus, Bisco Inc) (S50z) and 110 μ m Al2O3 and primer (Z-Prime Plus) (S110z). Two resin-based luting cements (Calibra, Panavia F) were used to build 2 mm-diameter cylinders onto the zirconia. After 24 h of storage in water, SBS testing was evaluate using a universal testing machine. Bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and post hoc comparison was done using Tukey test (α = .05).

Results

Groups using primer showed the high shear bond strength. The groups that did not use primer presented lower shear bond strengths.

Conclusion

The use of primer (Z-Prime Plus, Bisco) had significantly higher shear bond strengths. (J Korean Acad Prosthodont 2011;49:49-56)

REFERENCES

1.Blatz MB., Sadan A., Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent. 2003. 89:268–74.
crossref
2.Blatz MB., Chiche G., Holst S., Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int. 2007. 38:745–53.
3.Luthardt RG., Holzhu ¨ter M., Sandkuhl O., Herold V., Schnapp JD., Kuhlisch E., Walter M. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res. 2002. 81:487–91.
4.Luthardt R., Weber A., Rudolph H., Scho ¨ne C., Quaas S., Walter M. Design and production of dental prosthetic restorations: basic research on dental CAD/CAM technology. Int J Comput Dent. 2002. 5:165–76.
5.Kakehashi Y., Lu ¨thy H., Naef R., Wohlwend A., Scha ¨rer P. A new all-ceramic post and core system: clinical, technical, and in vitro results. Int J Periodontics Restorative Dent. 1998. 18:586–93.
6.Meyenberg KH., Lu ¨thy H., Scha ¨rer P. Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Dent. 1995. 7:73–80.
crossref
7.Yildirim M., Fischer H., Marx R., Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent. 2003. 90:325–31.
crossref
8.Glauser R., Sailer I., Wohlwend A., Studer S., Schibli M., Scha ¨rer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont. 2004. 17:285–90.
9.De′rand P., De′rand T. Bond strength of luting cements to zirconium oxide ceramics. Int J Prosthodont. 2000. 13:131–5.
10.O ¨zcan M., Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater. 2003. 19:725–31.
11.Zhang Y., Lawn BR., Malament KA., Van Thompson P., Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont. 2006. 19:442–8.
12.Zhang Y., Lawn BR., Rekow ED., Thompson VP. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater. 2004. 71:381–6.
crossref
13.Wolfart M., Lehmann F., Wolfart S., Kern M. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater. 2007. 23:45–50.
crossref
14.Kern M., Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater. 1998. 14:64–71.
crossref
15.Blatz MB., Sadan A., Martin J., Lang B. In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. J Prosthet Dent. 2004. 91:356–62.
crossref
16.Atsu SS., Kilicarslan MA., Kucukesmen HC., Aka PS. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dent. 2006. 95:430–6.
crossref
17.Tanaka R., Fujishima A., Shibata Y., Manabe A., Miyazaki T. Cooperation of phosphate monomer and silica modification on zirconia. J Dent Res. 2008. 87:666–70.
crossref
18.Tsuo Y., Yoshida K., Atsuta M. Effects of alumina-blasting and adhesive primers on bonding between resin luting agent and zirconia ceramics. Dent Mater J. 2006. 25:669–74.
crossref
19.Aida M., Hayakawa T., Mizukawa K. Adhesion of composite to porcelain with various surface conditions. J Prosthet Dent. 1995. 73:464–70.
crossref
20.Lu ¨thy H., Loeffel O., Hammerle CH. Effect of thermocycling on bond strength of luting cements to zirconia ceramic. Dent Mater. 2006. 22:195–200.
21.Akgungor G., Sen D., Aydin M. Influence of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. J Prosthet Dent. 2008. 99:388–99.
crossref
22.Wegner SM., Kern M. Long-term resin bond strength to zirconia ceramic. J Adhes Dent. 2000. 2:139–47.
23.Matinlinna JP., Heikkinen T., Ozcan M., Lassila LV., Vallittu PK. Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dent Mater. 2006. 22:824–31.
crossref
24.Kern M., Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. J Prosthet Dent. 1994. 71:453–61.
crossref
25.Della Bona A., Borba M., Benetti P., Cecchetti D. Effect of surface treatments on the bond strength of a zirconia-reinforced ceramic to composite resin. Braz Oral Res. 2007. 21:10–5.
26.Uo M., Sjo ¨gren G., Sundh A., Goto M., Watari F., Bergman M. Effect of surface condition of dental zirconia ceramic (Denzir) on bonding. Dent Mater J. 2006. 25:626–31.
crossref
27.Kosmac T., Oblak C., Jevnikar P., Funduk N., Marion L. Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res. 2000. 53:304–13.
28.Guazzato M., Quach L., Albakry M., Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent. 2005. 33:9–18.
crossref
29.Wang H., Aboushelib MN., Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater. 2008. 24:633–8.
crossref
30.Karakoca S., Yilmaz H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics. J Biomed Mater Res B Appl Biomater. 2009. 91:930–7.
crossref
31.Kern M., Thompson VP. Bonding to glass infiltrated alumina ceramic: adhesive methods and their durability. J Prosthet Dent. 1995. 73:240–9.
crossref
32.Tanaka T., Nagata K., Takeyama M., Atsuta M., Nakabayashi N., Masuhara E. 4-META opaque resin-a new resin strongly adhesive to nickel-chromium alloy. J Dent Res. 1981. 60:1697–706.
33.Lindgren J., Smeds J., Sjo ¨gren G. Effect of surface treatments and aging in water on bond strength to zirconia. Oper Dent. 2008. 33:675–81.
crossref
34.Silikas N., Wincott PL., Vaughan D., Watts DC., Eliades G. Surface characterization of precious alloys treated with thione metal primers. Dent Mater. 2007. 23:665–73.
crossref
35.O ¨zcan M., Nijhuis H., Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J. 2008. 27:99–104.
36.Magne P., Paranhos MP., Burnett LH Jr. New zirconia primer improves bond strength of resin-based cements. Dent Mater. 2010. 26:345–52.
crossref
37.Wang H., Aboushelib MN., Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater. 2008. 24:633–8.
crossref

Fig. 1.
Mean SBS values of groups using Lava (∗: P < .05).
jkap-49-49f1.tif
Fig. 2.
Mean SBS values of groups using Zirace (∗: P < .05).
jkap-49-49f2.tif
Fig. 3.
Mean SBS values of groups using Calibra (∗: P < .05).
jkap-49-49f3.tif
Fig. 4.
Mean SBS values of groups using Panavia F (∗: P < .05).
jkap-49-49f4.tif
Fig. 5.
SEM image of Lava after sandblasting (magnification ×1,000). The roughness of the surface is suitable for the mechanical interlocking between zirconia and resin cement. A: 50 μ m Al2O3 sandblasting, B: 110 μ m Al2O3 sandblasting.
jkap-49-49f5.tif
Fig. 6.
SEM image of Zirace after sandblasting (magnification ×1000). The pattern morphology is similar between 50 μ m Al2O3 sandblasting (A) and 110 μ m Al2O3 sandblasting (B). A: 50 μ m Al2O3 sandblasting, B: 110 μ m Al2O3 sandblasting.
jkap-49-49f6.tif
Fig. 7.
SEM image of failure mode (magnification ×100). A: Adhesive failure mode, B: Mixed failure mode.
jkap-49-49f7.tif
Table 1.
Experimental materials
Materials Brand Product Manufacturer
Zirconia Lava ZrO2 (97 %), Y2O3 (3 %) 3M ESPE, St. Paul, MN, USA
Zirace ZrO2 (70.7 %), Y2O3 (7.6%), Nb2O5 (7.5 %),Al2O3 (14.2%) Acucera Co. Inc., Korea
Primer Z-PRIME Plus Biphenyl dimethacrylate, Hydroxyethyl methacrylate, ethanol Bisco Inc, Schaumburg, IL,USA
Resin cement Calibra Barium boron fluoroalumino silicate glass, Bis-GMA, Dimethacrylate resin, Silica, Titanium Dioxide Dentsply DeTrey, Konstanz, Germany
Panavia F 2.0 ED Primer; 10-MDP, HEMA, hydrophilic dimethacrylate, CQ, N,N-diethanol p-toludine, water Kuraray Medical Inc, Okayama, Japan
Cement paste: 10-MDP, bisphenol A polyethoxy dimethacrylate, hydrophobic & hydrophilic dimethacrylate, benzoyl peroxide, Silica, initiator, Diethanol-P-toluidine, sodium trisopropyl benzene sulffinate, silanated barium glass, silanated titanium oxide sodium fluoride

Bis-GMA: Bisphenol-A diglycidyl methacrylate, HEMA: 2-hydroxyethyl methacrylate, CQ: Camphoroquinone, 10-MDP: 10-methacryloyloxydecyl dihydrogen phosphate.

Table 2.
Ex perimental gro ups
Groups (n = 10) Zirconia Sandblasting Primer (Z-prime plus) Resin cemen
LC50 Lava 50 μ m X Calibra
LP50 X Panavia F
LC50z O Calibra
LP50z O Panavia F
LC110 110 μ m X Calibra
LP110 X Panavia F
LC110z O Calibra
LP110z O Panavia F
ZC50 Zirace 50 μ m X Calibra
ZP50 X Panavia F
ZC50z O Calibra
ZP50z O Panavia F
ZC110 110 μ m X Calibra
ZP110 X Panavia F
ZC110z O Calibra
ZP110z O Panavia F
Table 3.
Shear bond strength means in MPa (SD) by resin cement and surface treatment
  Lava
50 μ m 50 μ m + Z-prime plus 110 μ m 110 μ m+ Z-prime plus
Calibra 7.17 (3.09) 19.44 (5.58) 7.83 (2.88) 17.94 (3.86)
Panavia F 10.61 (3.96) 14.60 (3.85) 11.71 (2.34) 18.05 (4.10)
Zirace
Calibra 5.59 (2.20) 20.56 (3.78) 6.54 (2.44) 19.40 (5.06)
Panavia F 9.76 (3.75)A 18.25 (4.64) 13.83 (4.58) 18.28 (2.67)
Table 4.
Failure mode after SBS testing
Lava
  LC50 LC110 LP50 LP110 LC50Z LC110Z LP50Z LP110Z
Adhesive 100 % 100 % 40 % 10 % 0 % 0 % 0 % 0 %
Cohesive 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
Mixed 0 % 0 % 60 % 90 % 100 % 100 % 100 % 100 %
Zirace
  ZC50 ZC110 ZP50 ZP110 ZC50Z ZC110Z ZP50Z ZP110Z
Adhesive 100 % 100 % 50 % 30 % 0 % 0 % 0 % 0 %
Cohesive 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
Mixed 0 % 0 % 50 % 70 % 100 % 100 % 100 % 100 %
TOOLS
Similar articles