Journal List > J Korean Soc Transplant > v.30(3) > 1034487

Kang, Park, and Nah: Posttransplant Diabetes Mellitus after Liver Transplantation: Risk Factors for Persistence

Abstract

Background:

The leading causes of late deaths after transplant were graft failure, malignancy, cardiovascular disease and renal failure. Diabetes mellitus (DM) is one of the greatest contributing factors to these late events, but also one of the most modifiable. This study was conducted to identify the incidence and time course of posttransplant diabetes mellitus (PTDM) after liver transplantation (LT) and evaluate the factors related to the development and reversal of PTDM.

Methods:

Patients who underwent LT between 2002 and 2015 at Ulsan University Hospital, were followed for more than 3 months and had no history of preoperative DM were the subject of this study. The authors investigated the incidence and time course of PTDM. Recipient factors, donor factors and postoperative factors presumed to contribute to the development and reversal of PTDM were investigated. Moreover, the effects of PTDM on the survival of liver transplant recipients were also investigated.

Results:

PTDM developed in 13 (16.5%) of 79 patients who fulfilled the inclusion criteria a median of 35 days after LT. There were no significant factors contributing to the development of PTDM. Five of the 13 PTDM patients recovered from the diabetic condition 5 to 38 months after the diagnosis of PTDM. Higher postoperative magnesium levels (P=0.022), development of acute cellular rejection (P=0.01), and steroid pulse therapy (P=0.045) were the predictive factors for reversal of PTDM. PTDM had no impact on patient survival (P=0.529).

Conclusions:

PTDM usually developed soon after LT operation and was reversible in 41% of the cases, especially when it is associated with steroid pulse therapy for acute cellular rejection. The association between serum magnesium level and reversibility of PTDM after LT needs further study to clarify the cause-and-effect relationship.

REFERENCES

1). Korean Network for Organ Sharing. Annual report of the transplant 2014 [Internet]. Seoul: KONOS;c2014. [cited 2016 Sep 13]. Available from:. http://konos.go.kr.
2). Dopazo C., Bilbao I., Castells LL., Sapisochin G., Moreiras C., Campos-Varela I, et al. Analysis of adult 20-year survivors after liver transplantation. Hepatol Int. 2015. 9:461–70.
crossref
3). Benhamou PY., Penfornis A. Natural history, prognosis, and management of transplantation-induced diabetes mellitus. Diabetes Metab. 2002. 28:166–75.
4). de Boccardo G., Kim JY., Schiano TD., Maurette R., Gagliardi R., Murphy B, et al. The burden of chronic kidney disease in long-term liver transplant recipients. Transplant Proc. 2008. 40:1498–503.
crossref
5). Zaccardi F., Webb DR., Yates T., Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016. 92:63–9.
crossref
6). Cha BS., Moon JH. Management of posttransplantation diabetes mellitus (PTDM). J Korean Soc Transplant. 2011. 25:8–14. (차봉수, 문재훈. 이식 후 당뇨병의 관리. 대한이식학회 지 2011;25: 8-14.).
crossref
7). Shapiro R., Scantlebury VP., Jordan ML., Vivas C., Gritsch HA., McCauley J, et al. Reversibility of tacrolimus-induced posttransplant diabetes: an illustrative case and review of the literature. Transplant Proc. 1997. 29:2737–8.
crossref
8). Heisel O., Heisel R., Balshaw R., Keown P. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant. 2004. 4:583–95.
crossref
9). Davidson J., Wilkinson A., Dantal J., Dotta F., Haller H., Hernandez D, et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation. 2003. 75(10 Suppl):SS3–24.
10). Sharif A., Hecking M., de Vries AP., Porrini E., Hornum M., Rasoul-Rockenschaub S, et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant. 2014. 14:1992–2000.
crossref
11). Pageaux GP., Faure S., Bouyabrine H., Bismuth M., Assenat E. Long-term outcomes of liver transplantation: diabetes mellitus. Liver Transpl. 2009. 15(Suppl 2):S79–82.
crossref
12). Montori VM., Basu A., Erwin PJ., Velosa JA., Gabriel SE., Kudva YC. Posttransplantation diabetes: a systematic review of the literature. Diabetes Care. 2002. 25:583–92.
13). Hjelmesaeth J., Hartmann A., Kofstad J., Stenstrom J., Leivestad T., Egeland T, et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation. 1997. 64:979–83.
14). Maes BD., Kuypers D., Messiaen T., Evenepoel P., Mathieu C., Coosemans W, et al. Posttransplantation diabetes mellitus in FK-506-treated renal transplant recipients: analysis of incidence and risk factors. Transplantation. 2001. 72:1655–61.
crossref
15). Vincenti F., Friman S., Scheuermann E., Rostaing L., Jenssen T., Campistol JM, et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant. 2007. 7:1506–14.
crossref
16). Shivaswamy V., Boerner B., Larsen J. Post-transplant diabetes mellitus: causes, treatment, and impact on outcomes. Endocr Rev. 2016. 37:37–61.
crossref
17). Hur KY., Kim MS., Kim YS., Kang ES., Nam JH., Kim SH, et al. Risk factors associated with the onset and progression of posttransplantation diabetes in renal allograft recipients. Diabetes Care. 2007. 30:609–15.
crossref
18). Pageaux GP., Dorent R., Mourad G., Calmus Y. Analysis of well-being after organ transplantation in a large cohort of French patients. Transplant Proc. 2002. 34:1687–8.
crossref
19). Bloom RD., Crutchlow MF. Transplant-associated hyperglycemia. Transplant Rev (Orlando). 2008. 22:39–51.
crossref
20). White DL., Ratziu V., El-Serag HB. Hepatitis C infection and risk of diabetes: a systematic review and meta-analysis. J Hepatol. 2008. 49:831–44.
crossref
21). Huang JW., Famure O., Li Y., Kim SJ. Hypomagnesemia and the risk of new-onset diabetes mellitus after kidney transplantation. J Am Soc Nephrol. 2016. 27:1793–800.
crossref
22). Kawaguchi T., Ide T., Taniguchi E., Hirano E., Itou M., Sumie S, et al. Clearance of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. Am J Gastroenterol. 2007. 102:570–6.
crossref
23). Yadav AD., Chang YH., Aqel BA., Byrne TJ., Chakkera HA., Douglas DD, et al. New onset diabetes mellitus in living donor versus deceased donor liver transplant recipients: analysis of the UNOS/OPTN database. J Transplant. 2013. 2013:269096.
crossref
24). van Hooff JP., Christiaans MH., van Duijnhoven EM. Evaluating mechanisms of post-transplant diabetes mellitus. Nephrol Dial Transplant. 2004. 19(Suppl 6):vi8–12.
crossref
25). Arner P., Gunnarsson R., Blomdahl S., Groth CG. Some characteristics of steroid diabetes: a study in renal-transplant recipients receiving high-dose corticosteroid therapy. Diabetes Care. 1983. 6:23–5.
crossref
26). Simmons LR., Molyneaux L., Yue DK., Chua EL. Steroid-induced diabetes: is it just unmasking of type 2 diabetes? ISRN Endocrinol. 2012. 2012:910905.
crossref
27). Neylan JF. Racial differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. FK506 Kidney Transplant Study Group. Transplantation. 1998. 65:515–23.
28). Harada N., Sugawara Y., Akamatsu N., Kaneko J., Tamura S., Aoki T, et al. New-onset diabetes mellitus developing in Asian adult living donor liver transplant recipients: a single-center experience. J Hepatobiliary Pancreat Sci. 2013. 20:634–8.
crossref
29). Ahn HY., Cho YM., Yi NJ., Suh KS., Lee KU., Park KS, et al. Predictive factors associated with the reversibility of post-transplantation diabetes mellitus following liver transplantation. J Korean Med Sci. 2009. 24:567–70.
crossref
30). Koivisto M., Valta P., Hockerstedt K., Lindgren L. Magnesium depletion in chronic terminal liver cirrhosis. Clin Transplant. 2002. 16:325–8.
crossref
31). Rodriguez-Moran M., Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003. 26:1147–52.
32). Jindal RM., Hjelmesaeth J. Impact and management of posttransplant diabetes mellitus. Transplantation. 2000. 70(11 Suppl):SS58–63.
33). Cole EH., Johnston O., Rose CL., Gill JS. Impact of acute rejection and new-onset diabetes on long-term transplant graft and patient survival. Clin J Am Soc Nephrol. 2008. 3:814–21.
crossref

Fig. 1.
Eligibility and enrollment of the patient. Abbreviations: UUH, Ulsan University Hospital; DM, diabetes mellitus.
jkstn-30-125f1.tif
Fig. 2.
Cumulative incidence of posttransplant diabetes mellitus.
jkstn-30-125f2.tif
Fig. 3.
Cumulative survival curves according to the presence of posttransplant diabetes mellitus (PTMD).
jkstn-30-125f3.tif
Table 1.
Factors associated with the development of PTDM
Variable PTDM (n=13) No PTDM (n=66) P-value
Preoperative recipient factor
  Age (yr) 52.46±9.896 52.05±8.917 0.880
  Male sex 11 (85) 48 (73) 0.498
  BMI (kg/m2) 24.72±2.30 24.38±3.34 0.732
  Family history of DM 0 5 (8) 0.584
  MELD score 17.85±8.678 16.02±7.993 0.459
  CTP score 9.62±2.219 8.45±2.348 0.104
  Random plasma glucose 128±44.319 119±44.735 0.538
  HCV vs. non-HCV etiology     0.124
    HCV 2 (15) 2 (3)  
  Non-HCV 11 (85) 64 (97)  
  Presence of HCC 7 (54) 36 (55) 0.963
Donor factor
  Age (yr) 37.85±16.47 38.05±15.02 0.966
  Male sex 12 (92) 46 (70) 0.167
  BMI (kg/m2) 22.14±3.63 24.29±3.92 0.081
  Donor DM 1 (8) 3 (5) 0.495
  OP type (DDLT) 10 (77) 37 (66) 0.161
Postoperative factor
  Immunosuppressant     0.124
    Tacrolimus 11 (85) 64 (97)  
    CsA 2 (15) 2 (3)  
  POD 1 Mg level 1.95±0.25 1.94±0.29 0.922
  Acute cellular rejection 4 (30.8) 15 (23.1) 0.724
  Pulse therapy 3 (13) 8 (12) 0.377

Data are presented as mean±SD or number (%).

Abbreviations: PTDM, posttransplant diabetes mellitus; BMI, body mass index; DM, diabetes mellitus; MELD, Model for End-Stage Liver Disease; CTP, Child-Turcott-Pugh; HCV, hepatitis C virus; HCC, hepatocellular carcinoma; OP, operation; DDLT, deceased donor liver transplantation; CsA, cyclosporine; POD, postoperative day; Mg, magnesium.

Table 2.
Factors associated with reversibility of PTDM
Variable Transient PTDM (n=5) Persistent PTDM (n=7) P-value
Preoperative recipient factor
  Age (yr) 56.20±4.44 50.57±12.726 0.432
  Male sex 3 (60) 7 (100) 0.152
  BMI (kg/m2) 25.67±1.31 24.05±2.86 0.220
  Family history of DM 0 0  
  Random plasma glucose 102.40±18.12 143.71±53.12 0.268
  HCV vs. non-HCV etiology     0.152
    HCV 2 (40) 0  
    Non-HCV 3 (60) 13 (100)  
  Present of HCC 4 (80) 2 (29) 0.242
Donor factor
  Age (yr) 48.20±12.99 30.57±16.70 0.078
  Male sex 4 (80) 7 (100) 0.417
  BMI (kg/m2) 22.70±2.13 21.75±4.56 0.679
  Donor DM 0 0 1.000
  OP type (DDLT) 1 (20) 2 (29) 1.000
Postoperative factor      
  Immunosuppression     1.000
    Tacrolimus 4 (80) 6 (86)  
  CsA 1 (20) 1 (14)  
  POD 1 Mg level 2.10±0.2 1.8±0.18 0.022
  Acute cellular rejection 4 (80) 0 0.010
  Pulse therapy 3 (60) 0 0.045

Data are presented as mean±SD or number (%).

Abbreviations: PTDM, posttransplant diabetes mellitus; BMI, body mass index; DM, diabetes mellitus; HCV, hepatitis C virus; HCC, hepatocellular carcinoma; OP, operation; DDLT, deceased donor liver transplantation; CsA, cyclosporine; POD, postoperative day; Mg, magnesium.

Table 3.
Treatment type of posttransplant diabetes mellitus patient
Variable No. (%)
No medication 1 (7.7)
Insulin 5 (38.5)
OHA 5 (38.5)
Insulin+OHA 2 (15.4)
Total 13 (100)

Abbreviation: OHA, oral hypoglycemic agent.

TOOLS
Similar articles