Journal List > J Korean Soc Transplant > v.29(3) > 1034455

Kim: Current Prospects of RNA Interference-based Therapy in Organ Transplantation

Abstract

RNA interference (RNAi) is a normal cellular process in which small RNAs control gene expression. siRNAs introduced into cells suppress gene expression through their recognition and cleavage of cognate mRNAs in a sequence specific manner. Due to its highly specific mode of action, RNAi has recently been tested for treatment or prevention of various diseases including organ transplantation as well as basic biomedical research. However, to achieve clinical success, there are some important issues that should be fully validated. First, siRNAs should be properly designed to avoid off-target effects. Second, siRNAs must be modified so as not to induce innate immune responses. Third, selective delivery of siRNA into desired organs or tissues is required. Despite such prerequisites, siRNAs are thought to be superior to traditional small molecule drug in terms of new drug development. In addition, in case of heart and islet transplantation which probably requires preservation of organs or cultivation of tissues for a while, siRNAs can be added to preserving solution or medium to control target gene expression during this period. In many research studies, mediators of innate immune response, inflammation, and cell death have been tested for alleviation of tissue injury and immune rejection after transplantation as potent targets of RNAi. We suggest that elucidation of exact mechanisms for tissue injury and immune rejection and subsequent selection and validation of target of RNAi in future studies might be helpful in enabling RNAi-based therapy in clinical organ transplantation to become a reality.

References

1). Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature. 1998; 391:806–11.
2). Hannon GJ. RNA interference. Nature. 2002; 418:244–51.
crossref
3). Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005; 309:1519–24.
crossref
4). Meister G, Tuschl T. Mechanisms of gene silencing by dou-ble-stranded RNA. Nature. 2004; 431:343–9.
crossref
5). Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007; 26:775–83.
crossref
6). Shi Y. Mammalian RNAi for the masses. Trends Genet. 2003; 19:9–12.
crossref
7). Zou GM, Yoder MC. Application of RNA interference to study stem cell function: current status and future perspectives. Biol Cell. 2005; 97:211–9.
crossref
8). Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001; 409:363–6.
crossref
9). Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000; 404:293–6.
crossref
10). Stevenson M. Therapeutic potential of RNA interference. N Engl J Med. 2004; 351:1772–7.
crossref
11). Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001; 20:6877–88.
crossref
12). Yin JQ, Wan Y. RNA-mediated gene regulation system: now and the future (Review). Int J Mol Med. 2002; 10:355–65.
crossref
13). Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell. 2004; 117:1–3.
14). Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. 2005; 23:227–31.
crossref
15). Choi I, Cho BR, Kim D, Miyagawa S, Kubo T, Kim JY, et al. Choice of the adequate detection time for the accurate evaluation of the efficiency of siRNA-induced gene silencing. J Biotechnol. 2005; 120:251–61.
crossref
16). Wang L, Mu FY. A web-based design center for vec-tor-based siRNA and siRNA cassette. Bioinformatics. 2004; 20:1818–20.
crossref
17). Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. 2004; 32:W124–9.
crossref
18). Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F. siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 2004; 32:W130–4.
crossref
19). Henschel A, Buchholz F, Habermann B. DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 2004; 32:W113–20.
crossref
20). Li L, Lin X, Khvorova A, Fesik SW, Shen Y. Defining the optimal parameters for hairpin-based knockdown constructs. RNA. 2007; 13:1765–74.
crossref
21). Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 2003; 13:83–105.
crossref
22). Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complemen-tarity. RNA. 2006; 12:1179–87.
crossref
23). Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005; 23:457–62.
crossref
24). Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nat Methods. 2006; 3:670–6.
crossref
25). Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003; 21:635–7.
crossref
26). Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005; 33:4527–35.
crossref
27). Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al. 3'UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods. 2006; 3:199–204.
28). Naito Y, Yamada T, Matsumiya T, Ui-Tei K, Saigo K, Morishita S. dsCheck: highly sensitive off-target search software for double stranded RNA-mediated RNA interference. Nucleic Acids Res. 2005; 33:W589–91.
29). Manche L, Green SR, Schmedt C, Mathews MB. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol. 1992; 12:5238–48.
crossref
30). Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003; 5:834–9.
crossref
31). Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005; 23:222–6.
crossref
32). Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008; 452:591–7.
crossref
33). Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005; 11:263–70.
34). Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 2005; 348:1079–90.
crossref
35). Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004; 5:730–7.
crossref
36). Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990; 62:379–90.
crossref
37). Judge AD, Bola G, Lee AC, MacLachlan I. Design of non-inflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006; 13:494–505.
crossref
38). Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005; 23:1002–7.
crossref
39). Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010; 28:172–6.
crossref
40). Czauderna F, Fechtner M, Dames S, Aygü n H, Klippel A, Pronk GJ, et al. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003; 31:2705–16.
41). Karikó K, Bhuyan P, Capodici J, Weissman D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol. 2004; 172:6545–9.
crossref
42). Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007; 8:173–84.
crossref
43). Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011; 12:329–40.
crossref
44). Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 2010; 28:570–9.
crossref
45). Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J. 2010; 277:4814–27.
46). Weinstein S, Peer D. RNAi nanomedicines: challenges and opportunities within the immune system. Nanotechnology. 2010; 21:232001.
crossref
47). Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009; 8:129–38.
crossref
48). Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004; 432:173–8.
crossref
49). Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007; 25:1149–57.
crossref
50). Wu Y, Navarro F, Lal A, Basar E, Pandey RK, Manoharan M, et al. Durable protection from Herpes Simplex Virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host Microbe. 2009; 5:84–94.
crossref
51). Chen Q, Butler D, Querbes W, Pandey RK, Ge P, Maier MA, et al. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J Control Release. 2010; 144:227–32.
crossref
52). Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in nonhuman primates. Nature. 2006; 441:111–4.
crossref
53). Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V, et al. Postexposure protection of nonhuman primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010; 375:1896–905.
crossref
54). Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010; 464:1067–70.
crossref
55). Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-ex-pressing tumors. Nat Biotechnol. 2009; 27:839–49.
crossref
56). Zhou J, Swiderski P, Li H, Zhang J, Neff CP, Akkina R, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res. 2009; 37:3094–109.
crossref
57). Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008; 134:577–86.
crossref
58). Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008; 319:627–30.
crossref
59). Kim SS, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther. 2010; 18:370–6.
crossref
60). Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007; 448:39–43.
crossref
61). Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M, et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol. 2009; 27:925–32.
crossref
62). Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009; 20:1754–64.
crossref
63). Gupta PK. RNRNA: The 2006 Nobel Prize for Physiology or Medicine. Curr Sci. 2006; 91:1443.
64). Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, et al. A status report on RNAi therapeutics. Silence. 2010; 1:14.
crossref
65). Zheng X, Lian D, Wong A, Bygrave M, Ichim TE, Khoshniat M, et al. Novel small interfering RNA-containing solution protecting donor organs in heart transplantation. Circulation. 2009; 120:1099–107.
crossref
66). Zhang X, Beduhn M, Zheng X, Lian D, Chen D, Li R, et al. Induction of alloimmune tolerance in heart transplantation through gene silencing of TLR adaptors. Am J Transplant. 2012; 12:2675–88.
crossref
67). Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011; 9:1005–10.
crossref
68). Li F, Mahato RI. iNOS gene silencing prevents inflammatory cytokine-induced beta-cell apoptosis. Mol Pharm. 2008; 5:407–17.
69). Callewaert H, Gysemans C, Cardozo AK, Elsner M, Tiedge M, Eizirik DL, et al. Cell loss during pseudoislet formation hampers profound improvements in islet lentiviral transduction efficacy for transplantation purposes. Cell Transplant. 2007; 16:527–37.
crossref
70). Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev. 2011; 63:47–68.
crossref
71). Ripoll E, Pluvinet R, Torras J, Olivar R, Vidal A, Franquesa M, et al. In vivo therapeutic efficacy of intrarenal CD40 silencing in a model of humoral acute rejection. Gene Ther. 2011; 18:945–52.
crossref
72). Bao C, Lv Z, Zhang X, Zhu J, Ding F, Zhang Y, et al. Suppression of cardiac allograft vasculopathy in mice by inhibition of CC-motif chemokine receptor 5. Transpl Immunol. 2012; 26:128–32.
crossref
73). Jia Y, Zhao Z, Xu M, Zhao T, Qiu Y, Ooi Y, et al. Prevention of renal ischemia-reperfusion injury by short hairpin RNA of endothelin A receptor in a rat model. Exp Biol Med (Maywood). 2012; 237:894–902.
crossref
74). Yang C, Jia Y, Zhao T, Xue Y, Zhao Z, Zhang J, et al. Naked caspase 3 small interfering RNA is effective in cold preservation but not in autotransplantation of porcine kidneys. J Surg Res. 2012; 181:342–54.
crossref
75). Shou Z, Xiao H, Xu Y, Wang Y, Yang Y, Jiang H, et al. SHARP-2 gene silencing by lentiviral-based short hairpin RNA interference prolonged rat kidney transplant recipients' survival time. J Int Med Res. 2009; 37:766–78.
crossref
76). Feng B, Chen G, Zheng X, Sun H, Zhang X, Zhang ZX, et al. Small interfering RNA targeting RelB protects against renal ischemia-reperfusion injury. Transplantation. 2009; 87:1283–9.
crossref
77). Zheng X, Zhang X, Feng B, Sun H, Suzuki M, Ichim T, et al. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury. Am J Pathol. 2008; 173:973–80.
crossref
78). Wang P, Yigit MV, Ran C, Ross A, Wei L, Dai G, et al. A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection. Diabetes. 2012; 61:3247–54.
crossref
79). Wang P, Yigit MV, Medarova Z, Wei L, Dai G, Schuetz C, et al. Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes. 2011; 60:565–71.
crossref
80). Cheng G, Zhu L, Mahato RI. Caspase-3 gene silencing for inhibiting apoptosis in insulinoma cells and human islets. Mol Pharm. 2008; 5:1093–102.
crossref

Table 1.
실험동물 장기이식 모델에서의 RNA간섭치료 연구
장기이식모델 표적 유전자 RNA 운반체 효과 참고문헌
마우스 동종심장이식 MyD88, TRIF siRNA 생존율 증가, 림프구 침윤 감소 (66)
마우스 동종심장이식 CCR5 shRNA Lentivirus 생존율 증가, 림프구 침윤 감소 (72)
마우스 자가심장 허혈/재관류손상 TNF-a, C3, Fas siRNA 생존율 증가, 심기능 향상, 림프구 침윤감소 (65)
랫 자가신장 허혈/재관류손상 ETaR shRNA Plasmid 신기능 향상, 조직 내 염증성 매개자 감소 (73)
미니돼지 자가신장 허혈/재관류손상 Caspase3 siRNA 조직손상 및 신기능 영향 없음 (74)
랫 동종신장이식 CD40 siRNA 공여체 특이항체, 보체, 염증매개자 감소, (71)
랫 동종신장이식 SHARP-2 shRNA Lentivirus 생존율 증가 (75)
마우스 자가신장 허혈/재관류손상 RelB siRNA 신기능 향상, 생존율 증가 (76)
마우스 자가신장 허혈/재관류손상 p53 siRNA 신기능 향상 (62)
마우스 자가신장 허혈/재관류손상 C5aR siRNA 신기능 향상, 염증매개자 감소 (77)
당뇨마우스 췌도세포이식 2m siRNA Nanoparticle 당뇨유도 연기, MRI로 모니토링 가능 (78)
당뇨마우스 췌도세포이식 CCR2 siRNA Lipid nanoparticle 당뇨유도 연기 (67)
당뇨마우스 췌도세포이식 Caspase3 siRNA Nanoparticle 췌도세포 사멸 감소 (79)
당뇨마우스 췌도세포이식 Caspase3 shRNA Adenovirus 당뇨유도 연기 (80)

Abbreviations: MyD88, myeloid differentiation factor 88; TRIF, TIR-domain-containing adapter-inducing interferon-; CCR5, CC-motif chemokine receptor 5; TNF-a, tumor necrosis factor-alpha; C3, complement 3; ETaR, endothelin A receptor; SHARP-2, split- and hairy-related protein-2; RelB, Rel/nuclear factor kappaB; 2m, 2-microglobulin.

Table 2.
신약개발 측면에서의 siRNA와 기존 화학약물의 다양한 특성 비교
  siRNA 화학약물
특이성 매우 높음 상대적으로 낮음
효능 보통 pM 농도 다양함
접근 가능한 표적 수 1,000개 이상 500∼1,000개
가능한 선도 및 후보분자 수 10∼100개 이상 2∼3개
선도물질 개발기간 1∼2개월 2∼4년
종간 교차 반응성 높음 낮음
제조과정 공통되고, 빠름 다양하고, 복잡할 수 있음

Reprinted from Table 1 of reference [64].

TOOLS
Similar articles