Journal List > J Korean Soc Transplant > v.23(3) > 1034291

J Korean Soc Transplant. 2009 Dec;23(3):203-213. Korean.
Published online December 31, 2009.  https://doi.org/10.4285/jkstn.2009.23.3.203
Copyright © 2009 The Korean Society for Transplantation
Current Status and Future Perspectives of Xenotransplantation
Chung-Gyu Park, M.D.,1,2,3,4 Jung-Sik Kim, Ph.D.,1,2,3,4 Jun-Seop Shin, Ph.D.,1,2,3,4 Yong-Hee Kim, M.D.,1,2,3,4 and Sang-Joon Kim, M.D.2,5
1Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.
2Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.
3Transplantation Research Institute SNUMRC, Seoul National University College of Medicine, Seoul, Korea.
4Cancer Research Institute and TIMRC, Seoul National University College of Medicine, Seoul, Korea.
5Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.

Corresponding author (Email: chgpark@snu.ac.kr )
Received December 18, 2009; Accepted December 22, 2009.

Abstract

Xenotransplantation using pigs as the transplant source holds great promise to resolve the severe shortage of human organ donors. Although stem-cell-derived organ and tissue regeneration have a potential to solve this as well for the future, it still remains as very early experimental phase. Likewise, artificial organs and mechanical devices have been simply used for bridge therapy to transplant. Therefore, xenotransplantation might provide the most imminent solution to the scarcity of human organ donors. In the last two decades, major progress has been made in understanding the mechanisms of xenografts rejection, zoonotic infections including porcine endogenous retrovirus (PERV) and production of genetically engineered pigs including α1,3-galactosyltransferase-deficient pigs. With these elaborations, it is now on the threshold of first clinical application. Particularly promising first target is porcine pancreatic islet xenotransplantation. Graft survival has been prolonged to almost one year in the non-human primate study and is waiting for the development of relatively non-toxic or clinically applicable immunosuppressive or tolerance-inducing regimens. This review highlights the currently known obstacles to translate xenotransplantation into clinical therapies and the possible strategies to overcome these hurdles, as well as current status and future perspective for clinical xenotransplantaion.

Keywords: Xenotransplantation; Porcine; Islet transplantation; Transplant rejection; Immune tolerance

Figures


Fig. 1
Shortage of organ donor in Korea (Data from Korean Network for Organ Sharing, KONOS).
Click for larger image

Tables


Table 1
Replacement of donor organ shortage
Click for larger image


Table 2
Solutions to organ shortage
Click for larger image


Table 3
Different approaches to overcome xenograft rejection
Click for larger image


Table 4
Results of selected pig-to-non-human primate solid organ transplantation studies
Click for larger image


Table 5
Isolation variables and islet characterization
Click for larger image


Table 6
Predictors of high islet isolation yield
Click for larger image

References
1. Groth CG, Korsgren O, Tibell A, Tollemar J, Möller E, Bolinder J, et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet 1994;344:1402–1404.
2. Rood PP, Cooper DK. Islet xenotransplantation: are we really ready for clinical trials? Am J Transplant 2006;6:1269–1274.
3. Hering BJ, Cooper DK, Cozzi E, Schuurman HJ, Korbutt GS, Denner J, et al. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--executive summary. Xenotransplantation 2009;16:196–202.
4. Galili U. Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 1993;14:480–482.
5. Schuurman HJ, Cheng J, Lam T. Pathology of xenograft rejection: a commentary. Xenotransplantation 2003;10:293–299.
6. Schuurman HJ, Pino-Chavez G, Phillips MJ, Thomas L, White DJ, Cozzi E. Incidence of hyperacute rejection in pig-to-primate transplantation using organs from hDAF-transgenic donors. Transplantation 2002;73:1146–1151.
7. Cozzi E, Bosio E, Seveso M, Vadori M, Ancona E. Xenotransplantation-current status and future perspectives. Br Med Bull 2005;75-76:99–114.
8. Cowan PJ. Coagulation and the xenograft endothelium. Xenotransplantation 2007;14:7–12.
9. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 2001;71:132–142.
10. Niemann H, Verhoeyen E, Wonigeit K, Lorenz R, Hecker J, Schwinzer R, et al. Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation 2001;72:1898–1906.
11. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295:1089–1092.
12. Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM, et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 2005;11:29–31.
13. Milland J, Christiansen D, Lazarus BD, Taylor SG, Xing PX, Sandrin MS. The molecular basis for galalpha(1,3)gal expression in animals with a deletion of the alpha1,3galactosyltransferase gene. J Immunol 2006;176:2448–2454.
14. Cascalho M, Platt JL. The immunological barrier to xenotransplantation. Immunity 2001;14:437–446.
15. Ramírez P, Montoya MJ, Ríos A, García Palenciano C, Majado M, Chávez R, et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc 2005;37:4103–4106.
16. Cozzi E, Bhatti F, Schmoeckel M, Chavez G, Smith KG, Zaidi A, et al. Long-term survival of nonhuman primates receiving life-supporting transgenic porcine kidney xenografts. Transplantation 2000;70:15–21.
17. Chen G, Qian H, Starzl T, Sun H, Garcia B, Wang X, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 2005;11:1295–1298.
18. Davila E, Byrne GW, LaBreche PT, McGregor HC, Schwab AK, Davies WR, et al. T-cell responses during pig-to-primate xenotransplantation. Xenotransplantation 2006;13:31–40.
19. Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 2007;7:519–531.
20. Simeonovic CJ. Xenogeneic islet transplantation. Xenotransplantation 1999;6:1–5.
21. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 2006;12:304–306.
22. Hering BJ, Wijkstrom M, Graham ML, Hårdstedt M, Aasheim TC, Jie T, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 2006;12:301–303.
23. Tseng YL, Dor FJ, Kuwaki K, Ryan D, Wood J, Denaro M, et al. Bone marrow transplantation from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. Xenotransplantation 2004;11:361–370.
24. Cosimi AB, Sachs DH. Mixed chimerism and transplantation tolerance. Transplantation 2004;77:943–946.
25. Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 2005;11:32–34.
26. Itescu S, Kwiatkowski P, Artrip JH, Wang SF, Ankersmit J, Minanov OP, et al. Role of natural killer cells, macrophages, and accessory molecule interactions in the rejection of pig-to-primate xenografts beyond the hyperacute period. Hum Immunol 1998;59:275–286.
27. Candinas D, Belliveau S, Koyamada N, Miyatake T, Hechenleitner P, Mark W, et al. T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. Transplantation 1996;62:1920–1927.
28. Sprangers B, Waer M, Billiau AD. Xenotransplantation: where are we in 2008? Kidney Int 2008;74:14–21.
29. Lilienfeld BG, Crew MD, Forte P, Baumann BC, Seebach JD. Transgenic expression of HLA-E single chain trimer protects porcine endothelial cells against human natural killer cell-mediated cytotoxicity. Xenotransplantation 2007;14:126–134.
30. Lin Y, Vandeputte M, Waer M. Contribution of activated macrophages to the process of delayed xenograft rejection. Transplantation 1997;64:1677–1683.
31. Wallgren AC, Karlsson-Parra A, Korsgren O. The main infiltrating cell in xenograft rejection is a CD4+ macrophage and not a T lymphocyte. Transplantation 1995;60:594–601.
32. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science 2000;288:2051–2054.
33. Ide K, Wang H, Tahara H, Liu J, Wang X, Asahara T, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A 2007;104:5062–5066.
34. Baumann BC, Stussi G, Huggel K, Rieben R, Seebach JD. Reactivity of human natural antibodies to endothelial cells from Galalpha(1,3)Gal-deficient pigs. Transplantation 2007;83:193–201.
35. Morozumi K, Kobayashi T, Usami T, Oikawa T, Ohtsuka Y, Kato M, et al. Significance of histochemical expression of Hanganutziu-Deicher antigens in pig, baboon and human tissues. Transplant Proc 1999;31:942–944.
36. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006;12:682–687.
37. Selander B, Mårtensson U, Weintraub A, Holmström E, Matsushita M, Thiel S, et al. Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J Clin Invest 2006;116:1425–1434.
38. Khalpey Z, Yuen AH, Kalsi KK, Kochan Z, Karbowska J, Slominska EM, et al. Loss of ecto-5'nucleotidase from porcine endothelial cells after exposure to human blood: Implications for xenotransplantation. Biochim Biophys Acta 2005;1741:191–198.
39. Morrell CN, Sun H, Swaim AM, Baldwin WM 3rd. Platelets an inflammatory force in transplantation. Am J Transplant 2007;7:2447–2454.
40. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood 2008;111:5271–5281.
41. Schulte Am Esch J 2nd, Robson SC, Knoefel WT, Hosch SB, Rogiers X. O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors. Xenotransplantation 2005;12:30–37.
42. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d'Apice AJ, Cowan PJ. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant 2008;8:1101–1112.
43. Lin CC, Cooper DK, Dorling A. Coagulation dysregulation as a barrier to xenotransplantation in the primate. Transpl Immunol 2009;21:75–80.
44. Ezzelarab M, Cooper DK. The potential of statins in xenotransplantation. Xenotransplantation 2007;14:100–103.
45. Aikawa M, Rabkin E, Sugiyama S, Voglic SJ, Fukumoto Y, Furukawa Y, et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001;103:276–283.
46. Ledoux S, Laouari D, Essig M, Runembert I, Trugnan G, Michel JB, et al. Lovastatin enhances ecto-5'-nucleotidase activity and cell surface expression in endothelial cells: implication of rho-family GTPases. Circ Res 2002;90:420–427.
47. Wilson CA. Porcine endogenous retroviruses and xenotransplantation. Cell Mol Life Sci 2008;65:3399–3412.
48. Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 2004;78:13880–13890.
49. Scobie L, Takeuchi Y. Porcine endogenous retrovirus and other viruses in xenotransplantation. Curr Opin Organ Transplant 2009;14:175–179.
50. Denner J, Schuurman HJ, Patience C. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 2009;16:239–248.
51. Mueller NJ, Barth RN, Yamamoto S, Kitamura H, Patience C, Yamada K, et al. Activation of cytomegalovirus in pig-to-primate organ xenotransplantation. J Virol 2002;76:4734–4740.
52. Mueller NJ, Livingston C, Knosalla C, Barth RN, Yamamoto S, Gollackner B, et al. Activation of porcine cytomegalovirus, but not porcine lymphotropic herpesvirus, in pig-to-baboon xenotransplantation. J Infect Dis 2004;189:1628–1633.
53. Sykes M, d'Apice A, Sandrin M. IXA Ethics Committee. Position paper of the Ethics Committee of the International Xenotransplantation Association. Xenotransplantation 2003;10:194–203.
54. Dufrane D, Gianello P. Pig islets for clinical islet xenotransplantation. Curr Opin Nephrol Hypertens 2009;18:495–500.
55. McKenzie IF, Koulmanda M, Mandel TE, Sandrin MS. Pig islet xenografts are susceptible to "anti-pig" but not Gal alpha(1,3)Gal antibody plus complement in Gal o/o mice. J Immunol 1998;161:5116–5119.
56. van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DK. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 2007;14:288–297.
57. Giovagnoli S, Luca G, Casaburi I, Blasi P, Macchiarulo G, Ricci M, et al. Long-term delivery of superoxide dismutase and catalase entrapped in poly(lactide-co-glycolide) microspheres: in vitro effects on isolated neonatal porcine pancreatic cell clusters. J Control Release 2005;107:65–77.
58. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hcd46 transgenic porcine islets. Am J Transplant 2009;9:2716–2726.
59. Cooper DK, Casu A. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--chapter 4: Pre-clinical efficacy and complication data required to justify a clinical trial. Xenotransplantation 2009;16:229–238.
60. Kim JH, Kim HI, Lee KW, Yu JE, Kim SH, Park HS, et al. Influence of strain and age differences on the yields of porcine islet isolation: extremely high islet yields from SPF CMS miniature pigs. Xenotransplantation 2007;14:60–66.
61. Kim HI, Lee SY, Jin SM, Kim KS, Yu JE, Yeom SC, et al. Parameters for successful pig islet isolation as determined using 68 specific-pathogen-free miniature pigs. Xenotransplantation 2009;16:11–18.
62. Sykes M. Commentary: World Health Assembly resolution 57.18 on xenotransplantation. Transplantation 2005;79:636–637.
TOOLS
Similar articles

Current Status of Solid Organ Xenotransplantation

Current Status and Future Perspectives of Xenotransplantation and Stem Cell Research in Transplantation Field

Current Status of Immunotherapy for Lung Cancer and Future Perspectives

Erratum: Leptospirosis in the Republic of Korea: Historical Perspectives, Current Status and Future Challenges

Laparoscopic Surgery for Advanced Gastric Cancer: Current Status and Future Perspectives