Journal List > J Bacteriol Virol > v.47(1) > 1034273

Yun, Kim, Kim, Chang, Ryu, Shin, Woo, and Kim: The Effect of Probiotics, Antibiotics, and Antipyretic Analgesics on Gut Microbiota Modification

Abstract

Human gut microbial community is playing a critical role in human health and associated with different human disease. In parallel, probiotics, antibiotics, and antipyretic analgesics (AAs) were developed to improve human health or cure human diseases. We therefore examined how probiotics, antibiotics, and AAs influence to the gut microbiota. Three independent case/control studies were designed from the cross-sectional cohort data of 1,463 healthy Koreans. The composition of the gut microbiota in each case and control group was determined via 16S ribosomal RNA Illumina next-generation sequencing. The correlation between microbial taxa and the consumption of each drug was tested using zero-inflated Gaussian mixture models, with covariate adjustment of age, sex, and body mass index (BMI). Probiotics, antibiotics, and AAs consumption yielded the significant differences in the gut microbiota, represented the lower abundance of Megasphaera in probiotics, the higher abundance of Fusobacteria in antibiotics, and the higher abundance of Butyrivibrio and Verrucomicrobia in AAs, compared to each control group. The reduction of Erysipelotrichaceae family was common in three drugs consumption.

REFERENCES

1). Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9:313–23.
crossref
2). Clemente JC, Ursell LK, Parfrey LW, Knight R. The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell. 2012; 148:1258–70.
crossref
3). Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016; 65:1906–15.
crossref
4). Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010; 7:503–14.
crossref
5). Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Infect Dis. 2013; 13:889–99.
crossref
6). Rogers MA, Aronoff DM. The influence of nonsteroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect. 2016; 22:178. e1-9.
crossref
7). van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013; 34:208–15.
crossref
8). Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest. 2014; 124:4212–8.
crossref
9). Morgun A, Dzutsev A, Dong X, Greer RL, Sexton DJ, Ravel J, et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut. 2015; 64:1732–43.
crossref
10). Peterson CT, Sharma V, Elmén L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015; 179:363–77.
crossref
11). Hinz B, Brune K. Antipyretic Analgesics: Nonsteroidal Antiinflammatory Drugs, Selective COX-2 Inhibitors, Paracetamol and Pyrazolinones. Analgesia. C Stein, editor. Berlin, Heidelberg: Springer Berlin Heidelberg;2007. p. 65–93.
crossref
12). Syer SD, Wallace JL. Environmental and NSAID-Enteropathy: Dysbiosis as a Common Factor. Curr Gastroenterol Rep. 2014; 16:377.
crossref
13). Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014; 2:6.
crossref
14). Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10:996–8.
crossref
15). Navas-Molina JA, Peralta-Sánchez JM, González A, McMurdie PJ, Vázquez-Baeza Y, Xu Z, et al. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 2013; 531:371–444.
crossref
16). Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013; 10:1200–2.
crossref
17). Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007; 1:56–66.
crossref
18). Relman DA. The human microbiome: ecosystem resili-ence and health. Nutr Rev. 2012; 70:S2–9.
crossref
19). Joyce SA, Gahan CG. The gut microbiota and the metabolic health of the host. Curr Opin Gastroenterol. 2014; 30:120–7.
crossref
20). Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl Environ Microbiol. 2005; 71:8228–35.
crossref
21). Hansen TA. Acidaminobacter. Bergey's Manual of Systematics of Archaea and Bacteria:. John Wiley & Sons, Ltd;2015.
crossref
22). Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic Health: Fermentation and Short Chain Fatty Acids. J Clin Gastroenterol. 2006; 40:235–43.
crossref
23). den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013; 54:2325–40.
crossref
24). Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife. 2013; 2:e01102.
crossref
25). Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014; 588:4223–33.
crossref
26). Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016; 8:42.
crossref
27). Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012; 22:299–306.
crossref
28). Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012; 22:292–8.
crossref
29). McCoy AN, Araújo-Pérez F, Azcárate-Peril A, Yeh JJ, Sandler RS, Keku TO. Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE. 2013; 8:e53653.
crossref
30). Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014; 74:1311–8.
31). Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes. 2012; 36:817–25.
crossref
32). Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human Genetics Shape the Gut Microbiome. Cell. 2014; 159:789–99.
crossref
33). Allen SJ, Martinez EG, Gregorio GV, Dans LF. Cochrane Database of Systematic Reviews-Probiotics for treating acute infectious diarrhoea:. John Wiley & Sons, Ltd;2010.
34). Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012; 10:323–35.
crossref
35). Lee WJ, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol. 2014; 10:416–24.
crossref
36). Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016; 65:426–36.
37). Duffin R, O'Connor RA, Crittenden S, Forster T, Yu C, Zheng X, et al. Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell-IL-22 axis. Science. 2016; 351:1333–8.
38). Sakamoto K, Kim YG, Hara H, Kamada N, Caballero-Flores G, Tolosano E, et al. IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections. Sci Immunol. 2017; 2.
crossref
39). Kaakoush NO. Insights into the role of Erysipelotrichaceae in the human host. Front Cell Infect Microbiol. 2015; 5:84.
crossref

Figure 1.
Comparison of gut microbiota between 14 probiotics and 28 control groups. (A) Alpha-diversity (Shannon index), (B) beta-diversity of PCoA plots in probiotics group by weighted UniFrac, (C) weighted UniFrac distance box plot within and between groups (∗∗ p < 0.01).
jbv-47-64f1.tif
Figure 2.
Comparison of gut microbiota between 55 antibiotics and 110 control groups. (A) Alpha-diversity (Shannon index), (B) beta-diversity of PCoA plots in antibiotics group by weighted UniFrac, (C) weighted UniFrac distance box plot within and between groups (∗p < 0.05).
jbv-47-64f2.tif
Figure 3.
Comparison of gut microbiota between 47 AAs and 94 control groups. (A) Alpha-diversity (Shannon index), (B) beta-diversity of PCoA plots in AAs group by weighted UniFrac, (C) weighted UniFrac distance box plot within and between groups (∗p < 0.05).
jbv-47-64f3.tif
Table 1.
Characteristics of probiotics study population
  Probiotics Control p value
Count (male) 14 (8) 28 (16)  
Age (years) 45.93 ± 9.83 45.93 ± 9.65 1.000
BMI (kg/m2) 23.36 ± 2.75 22.30 ± 2.17 0.179
Glucose (mg/dl) 96.07 ± 11.34 94.96 ± 10.60 0.757
Triglycerides (mg/dl) 124.14 ± 84.00 106.93 ± 53.40 0.423
HDL cholesterol (mg/dl) 58.93 ± 19.44 60.29 ± 15.57 0.808
Systolic BP (mmHg) 105.87 ± 14.30 104.39 ± 11.11 0.717
Diastolic BP (mmHg) 68.86 ± 10.22 67.79 ± 9.08 0.731
HOMA-IR 1.73 ± 1.48 0.98 ± 0.54 0.089

Data are presented as mean ± standard deviation Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; BP, blood pressure; HOMA-IR, homeostasis model assessment-estimated insulin resistance.

Table 2.
Characteristics of antibiotics study population
  Antibiotics Control P value
Count (male) 55 (28) 110 (56)  
Age (years) 46.58 ± 10.14 46.64 ± 9.98 0.974
BMI (kg/m2) 23.03 ± 3.22 22.67 ± 2.74 0.483
Glucose (mg/dl) 94.55 ± 10.20 95.44 ± 19.90 0.704
Triglycerides (mg/dl) 125.40 ± 105.50 104.10 ± 68.53 0.178
HDL cholesterol (mg/dl) 59.80 ± 18.36 58.73 ± 15.02 0.709
Systolic BP (mmHg) 108.22 ± 12.45 108.10 ± 14.24 0.956
Diastolic BP (mmHg) 70.64 ± 10.16 69.35 ± 9.60 0.438
HOMA-IR 1.45 ± 0.91 1.13 ± 0.77 0.027

Data are presented as mean ± standard deviation Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; BP, blood pressure; HOMA-IR, homeostasis model assessment-estimated insulin resistance.

Table 3.
Characteristics of antipyretic analgesics (AAs) study population
  AAs Control P value
Count (male) 47 (23) 94 (46)  
Age (years) 43.19 ± 8.89 43.18 ± 8.82 0.995
BMI (kg/m2) 23.64 ± 3.69 23.00 ± 2.64 0.295
Glucose (mg/dl) 98.36 ± 25.74 94.53 ± 17.66 0.362
Triglycerides (mg/dl) 117.57 ± 63.46 97.03 ± 44.93 0.051
HDL cholesterol (mg/dl) 56.47 ± 14.18 59.71 ± 14.00 0.202
Systolic blood pressure (mmHg) 108.94 ± 17.34 106.15 ± 11.00 0.318
Diastolic blood pressure (mmHg) 70.81 ± 13.25 68.90 ± 8.75 0.375
HOMA-IR 1.56 ± 1.16 1.19 ± 0.90 0.061

Data are presented as mean ± standard deviation Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; BP, blood pressure; HOMA-IR, homeostasis model assessment-estimated insulin resistance.

Table 4.
Significant taxa profiles of gut microbiota assessed by 16S metagenomics sequencing related with probiotics consumption
Phylum Family Genus Coeff.a p valueb
Cyanobacteria/Chloroplast     -2.37 0.017
Cyanobacteria/Chloroplast Streptophyta   -2.33 0.065
Firmicutes Erysipelotrichaceae Erysipelotrichaceae incertae sedis -3.81 0.059
Firmicutes Veillonellaceae Megasphaera -6.53 0.003

a Log2 ratio coefficient calculated by zero-inflated Gaussian mixture model using metageomeSeq package. Adjusted for age, sex, and BMI.

b Applied by Bonferroni multiple comparison correction

Table 5.
Significant taxa profiles of gut microbiota assessed by 16S metagenomics sequencing related with antibiotics consumption
Phylum Family Genus Coeff.a p valueb
Euryarchaeota (Archaea)     -2.97 6.04E-08
Euryarchaeota (Archaea) Methanobacteriaceae   -3.65 1.51E-10
Euryarchaeota (Archaea) Methanobacteriaceae Methanobrevibacter -3.30 4.33E-09
Bacterodetes Porphyromonadaceae Butyricimonas -1.70 5.59E-04
Firmicutes Paenibacillaceae   -2.85 8.06E-12
Firmicutes Paenibacillaceae Paenibacillus -2.85 1.11E-11
Firmicutes Christensenellaceae   -1.83 8.78E-06
Firmicutes Christensenellaceae Christensenella -1.77 3.71E-05
Firmicutes Vallitalea   -1.59 0.01
Firmicutes Enterococcaceae   -1.56 0.003
Firmicutes Enterococcaceae Enterococcus -1.61 0.005
Firmicutes Acidaminococcaceae Acidaminococcus -1.75 0.025
Firmicutes Erysipelotrichaceae Erysipelotrichaceae incertae sedis -4.51 3.28E-17
Firmicutes Erysipelotrichaceae Erysipelothrix -4.07 1.17E-16
Firmicutes Lachnospiraceae Butyrivibrio -3.24 8.28E-08
Firmicutes Ruminococcaceae Fastidiosipila -1.55 1.97E-06
Firmicutes Ruminococcaceae Anaerotruncus -0.93 0.027
Firmicutes Veillonellaceae Megasphaera -2.50 9.54E-05
Fusobacteria     1.98 0.007

a Log2 ratio coefficient calculated by zero-inflated Gaussian mixture model using metageomeSeq package. Adjusted for age,sex, and BMI.

b Applied by Bonferroni multiple comparison correction

Table 6.
Significant taxa profiles of gut microbiota assessed by 16S metagenomics sequencing related with AAs consumption
Phylum Family Genus Coeff.a p valueb
Euryarchaeota (Archaea)     3.10 3.34E-05
Verrucomicrobia     1.57 0.015
Firmicutes Clostridiaceae   1.77 0.026
Bacterodetes Porphyromonadaceae Butyricimonas -2.41 2.54E-08
Firmicutes Lachnospiraceae Butyrivibrio 4.84 1.60E-06
Firmicutes Erysipelotrichaceae Erysipelotrichaceae incertae sedis -3.36 1.70E-06
Proteobacteria Desulfovibrionaceae Desulfovibrio 2.57 6.14E-06

a Log2 ratio coefficient calculated by zero-inflated Gaussian mixture model using metageomeSeq package. Adjusted for age, sex, and BMI.

b Applied by Bonferroni multiple comparison correction

TOOLS
Similar articles