Journal List > J Bacteriol Virol > v.45(3) > 1034185

Choi and Shin: Immunomodulatory Roles of PE/PPE Proteins and Their Implications in Genomic Features of Mycobacterium tuberculosis

Abstract

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a notorious cause of human death worldwide. A deeper understanding of the proline-glutamate (PE) and proline-proline-glutamate (PPE) families, which compromise 10% of the coding regions in the Mtb genome, has uncovered their unique roles in host-pathogen interactions. Further, comparative genomic analysis of different Mtb strains has proposed that Mtb has acquired diverse gene sets that play immunomodulatory roles in host-pathogen interactions. This review delineates the various immunomodulatory roles of PE/PPE antigens and discusses their implications in the development of the improved diagnostic tools and vaccines.

REFERENCES

1). Wipperman MF, Sampson NS, Thomas ST. Pathogen roid rage: Cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol. 2014; 49:269–93.
2). Bonah C. The ‘experimental stable' of the BCG vaccine: safety, efficacy, proof, and standards, 1921–1933. Stud Hist Philos Biol Biomed Sci. 2005; 36:696–721.
crossref
3). Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998; 393:537–44.
4). Glickman MS, Jacobs WR Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell. 2001; 104:477–85.
5). Daffé M, Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998; 39:131–203.
crossref
6). Wilson R, Kumar P, Parashar V, Vilchèze C, Veyron-Churlet R, Freundlich JS, et al. Anti-tuberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol. 2013; 9:499–506.
crossref
7). Sibley LD, Adams LB, Krahenbuhl JL. Inhibition of interferon-gamma-mediated activation in mouse macrophages treated with lipoarabinomannan. Clin Exp Immunol. 1990; 80:141–8.
crossref
8). Chatterjee D, Roberts AD, Lowell K, Brennan PJ, Orme IM. Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect Immun. 1992; 60:1249–53.
crossref
9). McEvoy CR, Cloete R, Müller B, Schürch AC, van Helden PD, Gagneux S, et al. Comparative Analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLoS One. 2012; 7:e30593.
10). Sampson SL. Mycobacterial PE/PPE Proteins at the Host-Pathogen Interface. Clin Dev Immunol. 2010; 2011:497203.
crossref
11). Vordermeier HM, Hewinson RG, Wilkinson RJ, Wilkinson KA, Gideon HP, Young DB, et al. Conserved immune recognition hierarchy of mycobacterial PE/PPE proteins during infection in natural hosts. PLoS One. 2012; 7:e40890.
crossref
12). Nair S. Immunomodulatory Role of Mycobacterial PE/PPE Family of Proteins. Proc Indian Natn Sci Acad. 2014; 80:1055–72.
crossref
13). Chaitra MG, Hariharaputran S, Chandra NR, Shaila MS, Nayak R. Defining putative T cell epitopes from PE and PPE families of proteins of Mycobacterium tuberculosis with vaccine potential. Vaccine. 2005; 23:1265–72.
14). Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster region. BMC Evol Biol. 2006; 6:95.
15). Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, et al. Type VII secretion mycobacteria show the way. Nat Rev Microbiol. 2007; 5:883–91.
16). Sayes F, Sun L, Di Luca M, Simeone R, Degaiffier N, Fiette L, et al. Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential. Cell Host Microb. 2012; 11:352–63.
17). Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, et al. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect. 2004; 6:946–59.
crossref
18). Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med. 2005; 202:1715–24.
19). Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999; 285:732–6.
crossref
20). Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol. 2004; 173:2660–8.
21). Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. J Immunol. 2004; 172:6272–80.
22). Higgins DM, Sanchez-Campillo J, Rosas-Taraco AG, Lee EJ, Orme IM, Gonzalez-Juarrero M. Lack of IL-10 alters inflammatory and immune responses during pulmonary Mycobacterium tuberculosis infection. Tuberculosis. 2009; 89:149–57.
23). Mukhopadhyay S, Balaji KN. The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis. 2011; 91:441–7.
24). Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002; 43:717–31.
25). Nair S, Pandey AD, Mukhopadhyay S. The PPE18 protein of Mycobacterium tuberculosis inhibits NF-kappaB/rel-mediated proinflammatory cytokine production by upregulating and phosphorylating suppressor of cytokine signaling 3 protein. J Immunol. 2011; 186:5413–24.
26). Ahmed A, Das A, Mukhopadhyay S. Immunoregulatory functions and expression patterns of PE/PPE family members: Roles in pathogenicity and impact on anti-tuberculosis vaccine and drug design. IUBMB Life. 2015; 67:414–27.
crossref
27). Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol. 2007; 178:7222–34.
28). Delogu G, Brennan MJ. Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect Immun. 2001; 69:5606–11.
29). Jang B, Shin SJ. Peptidylarginine Deiminase and Citrullination: Potential Therapeutic Targets for Inflammatory Diseases. J Bacteriol Virol. 2013; 43:159–67.
crossref
30). Cha SB, Shin SJ. Mycobacterium bovis Bacillus Calmette-Guerin (BCG) and BCG-based vaccines against Tuberculosis. J Bacteriol Virol. 2014; 44:236–43.

Table 1.
Basic features of PE/PPE family subgroup
    PE family protein PPE family protein
N-terminal domain   PE alone (~110 aa) PPE (~180 aa) PPE-SVP GXXSVPXXW
C-terminal domain PE Unique C-terminal region PPE Unique C-terminal region
domain PE-PGRS (GGA or GGN)n PPE-MPTR (NXGXGNXG)n
Table 2.
Summary of PE/PPE protein functions in immune responses
  PE/PPE number Rv number Location Features Studied in Evaluated as vaccine candidate Reference
PE PE3 Rv0159c   Cell survival during hypoxia-induced persistence   O  
      Protective efficacy      
PE4 Rv0160c   Improves the survival of mycobacteria in macrophages M⊘ O 26
PE5 Rv0285   Modulate innate immunity and mediate bacillary survival M⊘   26
PE6 Rv0335c Cell wall Insertion sequences and phages      
PE7 Rv0916c ESX5 Protective immunity      
PE9 Rv1088   Protein pair, induced apoptosis through TLR4 M⊘    
PE10 Rv1089          
PE PE11 Rv1169c   B cell response, lipase Up-regulated in TB bacilli, induced necrotic cell death M⊘   10
PE15 Rv1386 ESX3 Modulate innate immunity and mediate bacillary survival M⊘   12
PE17 Rv1646   Protective immunity     12
PE18 Rv1788 ESX5 Strong immunogenicity, reduction of cell wall integrity   O 16
PE19 Rv1791 ESX5 Strong immunogenicity, reduction of cell wall integrity   O 16
PE20 Rv1806 ESX5 Reduce guinea pig bacterial lung burden   O 11
PE25 Rv2431c ESX5 Protein complex with PPE41, induce B cell response and T cell proliferation M⊘   23
PE34 Rv3746c   Up-regulated in human lung granuloma     10
PE35 Rv3872 RD1 Immunomodulatory role, increase IL-10, decrease IL-12/TNF-α, pair with PPE68 M⊘ O 12
PPE PPE2 Rv0256c   Inhibited nitric oxide M⊘   26
PPE13 Rv0878c   Important for mycobacterial survival in macrophage M⊘   26
PPE14 Rv0915c   Specific CD4 and CD8 T-cell response   O  
PPE17 Rv1168c   Targets the Mtb cell wall, TLR2 binding protein     25
PPE PPE18 Rv1196   Anti-inflammatory cytokine induction M⊘ O 23
PPE24 Rv1753c   Promote survival inside macrophage M⊘   26
PPE25 Rv1787 ESX5 Influence macrophage vacuole acidification M⊘ O 16
PPE26 Rv1789   T cell response, reduce bacterial lung   O  
PPE27 Rv1790 ESX5 Strong immunogenicity, reduction of cell wall integrity   O 16
      Intracellular survival of the bacilli      
PPE29 Rv1801   Up-regulated by 8-fold in human brain     13
      microvascular endothelial-cell-associated Mtb      
PPE31 Rv1807   Required for the growth of the bacterium in vivo during infection     12
PPE32 Rv1808   Manipulate the host cytokine M⊘   12
PPE34 Rv1917c   DC maturation DC   23
PPE36 Rv2108 Cell wall Potent T cell antigen     10
PPE37 Rv2123   Induce low tumor necrosis factor alpha     26
PPE38 Rv2352c Cell wall Modulates the innate immune response M⊘   26
PPE41 Rv2430c   Necrosis, B cell response M⊘   10, 12
PPE42 Rv2608   protective immunity   O  
PPE44 Rv2770c   Strong cellular and humoral immune responses s O 10
PPE46 Rv3018c   Strong T cell immunogenicity   O  
PPE47 Rv3021c   Up-regulated by 8-fold in human brain microvascular endothelial-cell-associated Mtb     13
PPE55 Rv3647c   Serological recognition      
      Drive Th1 immune response,      
PPE57 Rv3425 Cell wall Activation of macrophages in a TLR-2 dependent manner M⊘    
PPE60 Rv3478   Protective immunity, reduce bacterial lung      
PPE63 Rv3539 Membrane Intermediary metabolism and respiration     12
PPE68 Rv3873 Cell wall Potent T cell antigen, may act as an ESX-1 gating protein     10
PE- PGR PE- PGRS3 Rv0278c   Virulence, detoxification, adaptation      
PE- PGRS10 Rv0747   Lipid metabolism      
PE- PGRS11 PE- PGRS17 Rv0754 Rv0978c   DC maturation, survival of mycobacteria unde oxidative stress B cell response, up-regulated in TB bacilli r DC   12 12
PE- PGRS26 Rv1441c   Cause increased IL-10 and reduced IL-12 M⊘   10
PE- PRGS30 Rv1651c Cell pole Required for the full virulence, essential for survival in macrophage M⊘   26
      Influences bacterial cell structure, T cell immunogenicity      
PE- PRGS33 Rv1818c Cell wall Strong IFN-γ and protection again M. tuberculosis M⊘ O 10, 12
PE- PRGS34 Rv1917c Cell wall Directly interact with TLR-2, mediating apoptosis, necrosis. Induce selective maturation of human DC activation DC    
PE- PRGS62 Rv3812   Strong T cell immunogenicity, reduce bacterial lung burden   O 10
PE- PRGS63 Rv3097c   Lipase activity, LipY     10
TOOLS
Similar articles