Journal List > J Bacteriol Virol > v.45(3) > 1034173

Sohn and Nam: Influence of the Host Factors on Human Papillomavirus Infection and Vaccine Efficacy

Abstract

Human papillomavirus (HPV) is associated with cervical cell changes, genital warts, recurrent respiratory papillomatosis, laryngeal papillomatosis, head and neck cancer, and cervical cancer. Two commercial HPV vaccines have successfully been made available in the clinical field. This review covers the progress of cervical disease by understanding the nature of HPV infection, as well as the relationship between the host factors and HPV vaccine effectiveness. Among these host factors, microbiota has been revealed to influence the development and function of both the innate and adaptive immune systems. Therefore, the composition of the microbiome may ultimately affect vaccine efficacy. Understating the relationship between host factors and HPV infection/vaccine efficacy may prove to be useful in earlier diagnosis, as well as disease prophylaxis.

REFERENCES

1). Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. Carcinogenicity of human papillomaviruses. Lancet Oncol. 2005; 6:204.
crossref
2). Stanley M, Lowy DR, Frazer I. Chapter 12: Prophylactic HPV vaccines: underlying mechanisms. Vaccine. 2006; 24.
crossref
3). US Food and Drug Administaration. FDA approves Gardasil 9 for prevention of certain cancers caused by five additional types of HPV. 2014. Available from: URL:. http://www.fda.gov/newsevents/newsroom/pressannou-ncements/ucm426485.htm.
4). Valdez Y, Brown EM, Finlay BB. Influence of the microbiota on vaccine effectiveness. Trends Immunol. 2014; 35:526–37.
crossref
5). Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PloS One. 2013; 8:e63514.
crossref
6). zur Hausen H. Papillomaviruses in human cancers. Proc Assoc Am Physicians. 1999; 111:581–7.
crossref
7). Dunne EF, Datta SD, E Markowitz L. A review of prophylactic human papillomavirus vaccines: recommendations and monitoring in the US. Cancer. 2008; 113:2995–3003.
crossref
8). Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003; 348:518–27.
crossref
9). Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003; 16:1–17.
crossref
10). Gissmann L, zur Hausen H. Partial characterization of viral DNA from human genital warts (Condylomata acuminata). Int J Cancer. 1980; 25:605–9.
crossref
11). Lacey CJ, Lowndes CM, Shah KV. Chapter 4: Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. Vaccine. 2006; 24(Suppl 3):S3/35–41.
crossref
12). Gissmann L, Diehl V, Schultz-Coulon HJ, zur Hausen H. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma. J Virol. 1982; 44:393–400.
crossref
13). Bray F, Sankila R, Ferlay J, Parkin DM. Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer. 2002; 38:99–166.
crossref
14). Stanley M. Immune responses to human papillomavirus. Vaccine. 2006; 24(Suppl 1):S16–22.
crossref
15). Frazer I. Correlating immunity with protection for HPV infection. Int J Infect Dis. 2007; 11(Suppl 2):S10–6.
crossref
16). Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005; 32(Suppl 1):S7–15.
crossref
17). zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000; 92:690–8.
18). Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res. 2009; 15:6758–62.
19). Tindle RW. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer. 2002; 2:59–65.
crossref
20). O'Brien PM, Campo MS. Papillomaviruses: a correlation between immune evasion and oncogenicity? Trends Microbiol. 2003; 11:300–5.
21). Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990; 63:1129–36.
crossref
22). Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol. 2007; 81:9737–47.
crossref
23). Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene. 2001; 20:7874–87.
crossref
24). Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell. 1995; 83:1091–100.
25). DiMaio D, Liao JB. Human papillomaviruses and cervical cancer. Adv Virus Res. 2006; 66:125–59.
crossref
26). Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol. 2007; 178:3186–97.
crossref
27). Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology. 2012; 424:77–98.
crossref
28). Markle JG, Fish EN. SeXX matters in immunity. Trends Immunol. 2014; 35:97–104.
crossref
29). Veldhuijzen NJ, Snijders PJ, Reiss P, Meijer CJ, van de Wijgert JH. Factors affecting transmission of mucosal human papillomavirus. Lancet Infect Dis. 2010; 10:862–74.
crossref
30). Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM, et al. Cancer and inflammation: promise for biologic therapy. J Immunother. 2010; 33:335–51.
crossref
31). Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, et al. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature. 1998; 393:229–34.
crossref
32). Kohaar I, Thakur N, Salhan S, Batra S, Singh V, Sharma A, et al. TNFalpha-308G/A polymorphism as a risk factor for HPV associated cervical cancer in Indian population. Cell Oncol. 2007; 29:249–56.
33). Duarte I, Santos A, Sousa H, Catarino R, Pinto D, Matos A, et al. G-308A TNF-alpha polymorphism is associated with an increased risk of invasive cervical cancer. Biochem Biophys Res Commun. 2005; 334:588–92.
34). Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011; 10:311–23.
crossref
35). Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012; 30:759–95.
crossref
36). Vaishnava S, Hooper LV. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe. 2007; 2:365–7.
crossref
37). Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008; 8:685–98.
crossref
38). Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010; 140:845–58.
crossref
39). Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010; 107:11971–5.
crossref
40). Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011; 9:279–90.
crossref
41). Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444:1027–31.
crossref
42). Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457:480–4.
crossref
43). Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010; 328:228–31.
crossref
44). Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010; 32:815–27.
crossref
45). Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007; 131:33–45.
crossref
46). Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011; 145:745–57.
crossref
47). Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011; 7:569–78.
crossref
48). Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1):4615–22.
crossref
49). Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011; 479:538–41.
crossref
50). Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008; 455:1109–13.
crossref
51). Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011; 108:11548–53.
crossref
52). Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004; 5:987–95.
crossref
53). Franchi L, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim YG, et al. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell Microbiol. 2008; 10:1–8.
crossref
54). Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity. 2008; 29:178–81.
crossref
55). Swanson MS, Molofsky AB. Autophagy and inflammatory cell death, partners of innate immunity. Autophagy. 2005; 1:174–6.
crossref
56). Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol. 2008; 9:769–76.
crossref
57). Macpherson AJ, Geuking MB, Slack E, Hapfelmeier S, McCoy KD. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev. 2012; 245:132–46.
crossref
58). Kim DJ, Park JH, Franchi L, Backert S, Núñez G. The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1beta production in Helicobacter pylori infected dendritic cells. Eur J Immunol. 2013; 43:2650–8.
59). Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007; 7:31–40.
crossref
60). Dombrowski Y, Peric M, Koglin S, Kammerbauer C, Göss C, Anz D, et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011; 3:82ra38.
crossref
61). Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009; 458:514–8.
crossref
62). Chen GY, Liu M, Wang F, Bertin J, Núñez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011; 186:7187–94.
crossref
63). Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010; 207:1045–56.
crossref
64). Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A. 2009; 106:15813–8.
crossref
65). Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336:1268–73.
crossref
66). Qadri F, Bhuiyan TR, Sack DA, Svennerholm AM. Immune responses and protection in children in developing countries induced by oral vaccines. Vaccine. 2013; 31:452–60.
crossref
67). Huda MN, Lewis Z, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, et al. Stool microbiota and vaccine responses of infants. Pediatrics. 2014; 134:e362–72.
crossref
68). Bryan JT, Jansen KU, Lowe RS, Fife KH, McClowry T, Glass D, et al. Human papillomavirus type 11 neutralization in the athymic mouse xenograft system: correlation with virus-like particle IgG concentration. J Med Virol. 1997; 53:185–8.
crossref
69). Matsuda F, Chowdhury MI, Saha A, Asahara T, Nomoto K, Tarique AA, et al. Evaluation of a probiotics, Bifidobacterium breve BBG-01, for enhancement of immunogenicity of an oral inactivated cholera vaccine and safety: a randomized, double-blind, placebo-controlled trial in Bangladeshi children under 5 years of age. Vaccine. 2011; 29:1855–8.
70). Soh SE, Ong DQ, Gerez I, Zhang X, Chollate P, Shek LP, et al. Effect of probiotic supplementation in the first 6 months of life on specific antibody responses to infant Hepatitis B vaccination. Vaccine. 2010; 28:2577–9.
crossref
71). Kukkonen K, Nieminen T, Poussa T, Savilahti E, Kuitunen M. Effect of probiotics on vaccine antibody responses in infancy–a randomized placebo-controlled double-blind trial. Pediatr Allergy Immunol. 2006; 17:416–21.
72). Isolauri E, Joensuu J, Suomalainen H, Luomala M, Vesikari T. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine. 1995; 13:310–2.
crossref
73). Fang H, Elina T, Heikki A, Seppo S. Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol. 2000; 29:47–52.
crossref
74). Vlasova AN, Chattha KS, Kandasamy S, Liu Z, Esseili M, Shao L, et al. Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PloS One. 2013; 8:e76962.
crossref
75). Moingeon P. Adjuvants for allergy vaccines. Hum Vaccin Immunother. 2012; 8:1492–8.
crossref
76). Zuany-Amorim C, Manlius C, Trifilieff A, Brunet LR, Rook G, Bowen G, et al. Long-term protective and antigen-specific effect of heat-killed Mycobacterium vaccae in a murine model of allergic pulmonary inflammation. J Immunol. 2002; 169:1492–9.
77). West CE, Gothefors L, Granström M, Käyhty H, Hammarström ML, Hernell O. Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Pediatr Allergy Immunol. 2008; 19:53–60.
crossref
78). Gao W, Weng J, Gao Y, Chen X. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis. 2013; 13:271.
crossref

Figure 1.
A schematic diagram of a possible mode of the oncogenic action of human papillomavirus (HPV). HPV infection into a host tissue leads to oncogenic processes. HPV E5 protein suppresses the expression of MHC class I and antigen processing. HPV E6 protein binds p53 tumor suppressor protein and this binding blocks p53 defense mechanisms, as well as p53-induced antiviral activity (down-regulates the expression of the antiviral interferon-related genes and the transcription factor NF-κB), through cell cycle arrest and apoptosis of the infected cell by degradation of p53 via ubiquitination. HPV E7 protein binds pRb cell cycle regulatory protein, which can block cell cycle arrest by degradation of Rb via ubiquitination. Therefore, these proteins play roles in tumor promotion. These HPV E5, E6, and E7 proteins are able to impair the innate and acquired immune response, which play roles in the evasion of the host immune system. MHC class I, major histcompatibility complex class I; pRb, retinoblastoma protein; Ag, antigen; IFN, interferon gamma; NF-κB, nuclear factor-κB.
jbv-45-179f1.tif
Figure 2.
A schematic diagram of possible mode for the relationship between the microbiota and the immune system in the intestinal lamina propria. The microbiota is composed of a variety of bacteria with different characters. The microbiota influence the development and function of both the innate and adaptive immune systems. The intestinal microflora has TLR5 ligans such as flagellin. TLR5 signaling stimulates CD11bhigh CD11chigh DCs, which can catalyze the conversion of vitamin A to retinoic acid; this causes B cells to differentiate into IgA producing plasma cells. Secreted IgA regulates the ecological balance of microbiota, which regulates the composition and character of microbiota. Ultimately, IgA induces compartmentalization of the microbiota to the intestinal lumen, and it contributes to protection from viral infections. HPV, human papillomavirus; TLR5, toll like receptor 5; DC, dendritic cell; IgA, immunoglobulin A; Raldh2, retinaldehyde dehydrogenase 2.
jbv-45-179f2.tif
Table 1.
Characteristics of anti-HPV vaccines
  Bivalent vaccine Quadrivalent vaccine Ninevalent vaccine
Commercial name Cervarix® Gardasil® Gardasil® 9
HPV types HPV 16/ 18 HPV 6/ 11/ 16/ 18 HPV 6/ 11/ 16/ 18/ 31/ 33/ 45/ 52/ 58
Producer cells Trichoplusia ni (Hi 5) insect cell line infected with L1 recombinant baculovirus Saccharomyces cerevisiae expressing L1 Saccharomyces cerevisiae expressing L1
Administration schedule Girls and women: 9~14 years: 0, 1, 6 months Girls and women: 9~13 years: 0, 2, 6 months Girls and women: 9~26 years: 0, 2, 6 months Boys: 9~15 years: 0, 2, 6 months
Adjuvant Aluminum hydroxyphosphate sulfate Aluminum hydroxide and 3-O-deacylated-4-monophosphoryl lipid A Aluminum hydroxyphosphate sulfate or AAHS
Table 2.
Summary of the impact of probiotics on vaccine efficacy
Probiotics Vaccines Biological effects
Lacrobacillus casei strain GG (LGG) D x RRV rhesus-human reassortant rotavirus vaccine LGG has an immunostimulatinq effect on rotavirus vaccination via enhance IgA production and release of interferon γ.
LGG or Lactococcus lactis (L. lactis) Salmonella typhi Ty21a vaccine LGG stimulated IgA sASC responses against S. typhi Ty21a. L. lactis has increase CR3 receptor expression on the neutrophils which can influence the non-specific immune response.
LGG and Bifidobacterium lactis BB12 (BB12) AttHRV vaccine LGG and BB12 acted as an immunostimulant for AttHRV vaccine via modulated DC activation and responses.
L. lactis, Lactobacillus plantarum or Bifidobacterium bifidum Allergy vaccines These bacteria have induction of Th1 response in eczema and asthma models.
Mycobacterium vaccae (M. vaccae) Allergy vaccines Heat-killed M. vaccae induces Treg cells and decreases airway inflammation in atopic dermatitis or asthma murine model.
Bifidobacterium breve strain Yakult (BBG-01) Cholera vaccine A trend towards increased serum IgG after administration of BBG-01
Bifidobacterium longum BL999 (BL999) and Lactobacillus rhamnosus LPR (LPR) Hepatitis B vaccine BL999 and LPR were improved HepB surface antibody responses in subjects.
Lactobacillus paracasei ssp. Diphtheria, tetanus and LF19 was increased the capacity to raise immune responses in
F19 (LF19) Hib vaccines infants breastfed < 6 months.
LGG Live attenuated influenza vaccines LGG was increased protective hemagglutinin inhibition titers.
L. fermentum CECT5716 (LCECT5716) Inactivated influenza vaccine A trend towards increased TNF-α, total IgG and IgM, and influenza-specific IgA after administration of LCECT5716.
BB12 and L. paracasei 431 (L431) Inactivated influenza vaccine BB12 and L431 were elevated influenza specific IgG levels and influenza specific IgA responses.
TOOLS
Similar articles