Journal List > J Bacteriol Virol > v.45(2) > 1034162

Park, Kim, Kim, and Hwang: Molecular Characterization of Community-Associated Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Isolates from Children with Skin Infections in Busan, Korea

Abstract

The prevalence and molecular characteristics of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and methicillin-susceptible S. aureus (CA-MSSA) from children with skin infection were investigated by staphylocoagulase (SC) typing, multilocus sequence typing (MLST), SCC mec typing and virulent toxins, including Panton-Valentine leucocidin (PVL), and exfoliative toxins (ET). Among 69 cases of CA-S. aureus for a 3 month period from March to June, 2014 at hospital in Busan, 28 (40.6%) were MRSA and 41 (59.4%) were MSSA. Of the 28 CA-MRSA isolates, two major clones were identified as SC type Vb-ST72-SCC mec type IV (53.6%) and SC type l-ST89-SCC mec type II variant (42.8%), and the remaining one (3.6%) was SC type lll-ST8-SCC mec type IV. In CA-MSSA, the prevalent clone was SC type Vb-ST72 (29.3%), followed by SC type Vb-ST188 (21.9%), SC type Va-ST121 (19.5%) and SC type lV-ST30 (9.6%). None was positive for PVL gene, and all of the SC type l-ST89-SCC mec type II variant clones were ETB gene positive. The data suggest that there are significant clonal relatedness with specific SC types, and genetic diversities in both community strains isolated from children with skin infections.

REFERENCES

1). David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010; 23:616–87.
2). Kim ES, Lee HJ, Chung GT, Lee YS, Shin DH, Jung SI, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates in Korea. J Clin Microbiol. 2011; 49:1979–82.
3). Kikuta H, Shibata M, Nakata S, Yamanaka T, Sakata H, Akizawa K, et al. Predominant Dissemination of PVL-Negative CC89 MRSA with SCC mec Type II in Children with Impetigo in Japan. Int J Pediatr. 2011; 2011:143872.
4). Jevons MP. "Celbenin"-resistant Staphylococci. Br Med J. 1961; 14:124–5.
5). Hisata K, Kuwahara-Arai K, Yamanoto M, Ito T, Nakatomi Y, Cui L, et al. Dissemination of Methicillin-Resistant Staphylococci among HealthyJapanese Children. J Clin Microbiol. 2005; 43:3364–72.
6). Kim ES, Song JS, Lee HJ, Choe PG, Park KH, Cho JH, et al. A survey of community-associated methicillin-resistant Staphylococcus aureus in Korea. J Antimicrob Chemother. 2007; 60:1108–14.
7). Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002; 46:2155–61.
8). Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel Multiplex PCR Assay for Characterization and concomitant subtyping of Staphylococcal Cassette Chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005; 43:5026–33.
9). Lulitanond A, Ito T, Li S, Han X, Ma XX, Engchanil C, et al. ST9 MRSA strains carrying a variant of type IX SCC mec identified in the Thai community. BMC Infect Dis. 2013; 13:214.
crossref
10). Berglund C, Ito T, Ma XX, Ikeda M, Watanabe S, Söderquist B, et al. Genetic diversity of methicillin-resistant Staphylococcus aureus carrying type IV SCC mec in Orebro County and the western region of Sweden. J Antimicrob Chemother. 2009; 63:32–41.
11). Zhao C, Liu Y, Zhao M, Liu Y, Yu Y, Chen H, et al. Characterization of community acquired Staphylococcus aureus associated with skin and soft tissue infection in Beijing: high prevalence of PVL+ ST398. PLoS One. 2012; 7:e38577.
12). Lamers RP, Stinnett JW, Muthukrishnan G, Parkinson CL, Cole AM. Evolutionary Analyses of Staphylococcus aureus identify genetic relationships between nasal carriage and clinical isolates. PLoS One. 2011; 6:e16426.
13). Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000; 38:1008–15.
14). Hwang SM, Seki K, Sakurada J, Ogasawara M, Murai M, Ohmayu S, et al. Improved methods for detection and serotyping of coagulase from Staphylococcus aureus. Microbiol Immunol. 1989; 33:175–82.
15). Kanemitsu K, Yamamoto H, Takemura H, Kaku M, Shimada J. Relatedness between the coagulase gene 3′-end region and coagulase serotypes among Staphylococcus aureus strains. Microbiol Immunol. 2001; 45:23–7.
16). Watanabe S, Ito I, Takeuchi F, Endo M, Okuno E, Hiramatsu K. Structural comparison of ten serotypes of staphylocoagulases in Staphylococcus aureus. J Bacteriol. 2005; 187:3698–707.
17). Hwang SM, Kim TU. Changes in coagulase serotype of Staphylococcus aureus isolates in Busan, 1994–2005. Kor J Microbiol. 2007; 43:346–50.
18). Hirose M, Kobayashi N, Ghosh S, Paul SK, Shen T, Urushibara N, et al. Identification of staphylocoagulase genotypes I-X and discrimination of type IV and V subtypes by multiplex PCR assay for clinical isolates of Staphylococcus aureus. Jpn J Infect Dis. 2010; 63:257–63.
19). Watanabe S, Ito T, Sasaki T, Li S, Uchiyama I, Kishii K, et al. Genetic diversity of staphylocoagulase genes (coa): insight into the evolution of variable chromosomal virulence factors in Staphylococcus aureus. PLoS One. 2009; 4:e5714.
20). Centers for Disease Control and Prevention. 2005. posting date.Community associated MRSA information for clinicians. Infection control topics. Centers for Disease Control and Prevention;Atlanta, GA: www.cdc.gov/ncidod/dhqp/ar_mrsa_ca_clinicians.html.
21). Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol. 1991; 29:2240–4.
crossref
22). Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. Involvement of Panton-Valentine leukocidin producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis. 1999; 29:1128–32.
23). Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol. 1991; 29:426–30.
24). Lee J, Sung JY, Kim YM, Oh CE, Kim HB, Choi EH, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus obtained from the anterior nares of healthy Korean children attending daycare centers. Int J Infect Dis. 2011; 15:e558–63.
25). Bae IG, Kim JS, Kim S, Heo ST, Chang C, Lee EY. Genetic correlation of community-associated methicillin-resistant Staphylococcus aureus strains from carriers and from patients with clinical infection in one region of Korea. J Korean Med Sci. 2010; 25:197–202.
26). Huang YC, Chen CJ. Community-associated methicillin-resistant Staphylococcus aureus in children in Taiwan, 2000s. Int J Antimicrob Agents. 2011; 38:2–8.
27). Stam-Bolink EM, Mithoe D, Baas WH, Arends JP, Möller AV. Spread of a methicillin-resistant Staphylococcus aureus ST80 strain in the community of the northern Netherlands. Eur J Clin Microbiol Infect Dis. 2007; 26:723–7.
crossref
28). Song JH, Hsueh PR, Chung DR, Ko KS, Kang CI, Peck KR, et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J Antimicrob Chemother. 2011; 66:1061–9.
29). Kim ES, Lee HJ, Chung GT, Lee YS, Shin DH, Jung SI, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates in Korea. J Clin Microbiol. 2011; 49:1979–82.
30). Cha EK, Chang KS, Hwang SM. Correlation between staphylococcal cassette chromosome mec type and coagulase serotype of methicillin-resistant Staphylococcus aureus. J Bacteriol Virol. 2009; 39:71–8.
31). Kim YG, Lee HS, Kang SK, Chang KS, Hwang SM. Correlation Between the Prevalence of Superantigenic Toxin Genes and Coagulase Serotypes of Staphylococcus aureus Isolates. J Bacteriol Virol. 2011; 41:157–64.
32). Sakai F, Takemoto A, Watanabe S, Aoyama K, Ohkubo T, Yanahira S, et al. Multiplex PCRs for assignment of Staphylocoagulase types and subtypes of type VI Staphylocoagulase. J Microbiol Methods. 2008; 75:312–7.
crossref
33). Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA, Stabler RA, et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol. 2006; 188:669–76.
34). Daskalaki M, Rojo P, Marin-Ferrer M, Barrios M, Otero JR, Chaves F. Panton-Valentine leukocidin-positive Staphylococcus aureus skin and soft tissue infections among children in an emergency department in Madrid, Spain. Clin Microbiol Infect. 2010; 16:74–7.
35). Nakaminami H, Noguchi N, Ikeda M, Hasui M, Sato M, Yamamoto S, et al. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. J Med Microbiol. 2008; 57:1251–8.

Table 1.
Distribution of staphylocoagulase types in CA-MRSAa and CA-MSSAb isolates
SC typec No. (%) of isolates
MRSA MSSA Total
l 12 (42.8) 0 12 (17.4)
ll 0 0 0
lll 1 (3.6) 0 1 (1.4)
lV 0 6 (14.6) 6 (8.7)
Va 0 8 (19.5) 8 (11.6)
Vb 15 (53.6) 21 (51.2) 36 (52.1)
Vl 0 0 0
Vll 0 3 (7.3) 3 (4.3)
Vlll 0 3 (7.3) 3 (4.3)
lX 0 0 0
X 0 0 0
Total 28 (100) 41 (100) 69 (100)

a CA-MRSA: community-associated methicillin-resistant Staphylococcus aureus,

b MSSA: methicillin-susceptible Staphylococcus aureus,

c Staphylocoagulase type

Table 2.
Molecular characteristics of 28 CA-MRSA isolates
SC type No. (%) of isolate MLSTa SCC mecc type Toxin gene
STb Allelic profile pvl eta etb
l 12 (42.8) ST89 (42.8) 1-26-28-18-18-33-50 II variant 0 0 12
lll 1 (3.6) ST8 (3.6) 3-3-1-1-4-4-3 IV 0 0 0
Vb 15 (53.6) ST72 (53.6) 1-4-1-8-4-4-3 IV 0 0 2

a MLST: multilocus sequence typing,

b ST: sequence type,

c SCC mec: staphylococcal cassette chromosome mec

Table 3.
Molecular characteristics of 41 CA-MSSA isolates
SC type No. (%) of isolates MLSTa Toxin gene
STb Allelic profile pvl eta etb
lV 6 (14.6) ST30 (9.7) 2-2-2-2-6-3-2 0 0 0
    ST6 (4.9) 12-4-1-4-12-1-3 0 0 0
Va 8 (19.5) ST121 (19.5) 6-5-6-2-7-14-5 0 4 0
Vb 21 (51.2) ST72 (29.3) 1-4-1-8-4-4-3 0 0 0
    ST188 (21.9) 3-1-1-8-1-1-1 0 0 0
Vll 3 (7.3) ST1 (7.3) 1-1-1-1-1-1-1 0 0 0
Vlll 3 (7.3) ST20 (7.3) 4-9-1-8-1-10-8 0 0 0

a MLST: multilocus sequence typing,

b ST: sequence type

Table 4.
Antimicrobial resistant rates of the CA-MRSA and MSSA isolates according to sequence types
Antimicrobial agent CA-MRSA CA-MSSA
ST72 (n=15) ST89 (n=12) ST8 (n=1) Total n (%) ST72 (n=12) ST188(n=9) ST121(n=8) ST30 (n=4) ST6 (n=2) ST1 (n=3) ST20 (n=3) Total n (%)
Oxacillin 15 (100) 12 (100) 1 (100) 28 (100) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Clindamycin 4 (26) 10 (83) 0 (0) 14 (50) 0 (0) 0 (0) 2 (25) 0 (0) 2 (100) 0 (0) 0 (0) 4 (9)
Erythromycin 4 (26) 10 (83) 0 (0) 14 (50) 0 (0) 2 (22) 3 (37) 0 (0) 2 (100) 0 (0) 0 (0) 7 (17)
Gentamycin 4 (26) 9 (75) 1 (100) 14 (50) 4 (33) 4 (44) 2 (25) 0 (0) 0 (0) 0 (0) 2 (66) 12 (29)
Fucidic acid 0 (0) 0 (0) 0 (0) 0 (0) 12 (100) 2 (22) 7 (87) 0 (0) 0 (0) 2 (66) 2 (66) 25 (60)
Ciprofloxacin 1 (6) 0 (0) 0 (0) 1 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Mupirocin 5 (33) 6 (50) 0 (0) 11 (39) 3 (25) 3 (33) 3 (39) 0 (0) 0 (0) 0 (0) 0 (0) 9 (21)
Telithromycin 0 (0) 5 (41) 0 (0) 5 (17) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Tetracycline 3 (20) 1 (8) 0 (0) 4 (14) 1 (8) 3 (33) 1 (12) 0 (0) 0 (0) 0 (0) 0 (0) 5 (12)
Vancomycin 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
TOOLS
Similar articles