Journal List > J Bacteriol Virol > v.44(2) > 1034129

Kang, Lee, Park, Song, Cho, Baik, Youn, Seo, Rhee, and Lee: Proteome Analysis of a Catalase-deficient Isogenic Mutant of Helicobacter pylori 26695

Abstract

Helicobacter pylori, a gram-negative bacterium, is a causative agent of gastroduodenal diseases of human. Human immune system produces harmful reactive oxygen species to kill this bacterium that locates the microaerophilic mucous layer. H. pylori harbors various antioxidant enzymes including SodB, KatA and AhpC to protect the oxygen toxicity. We removed the catalase gene (katA) from H. pylori 26695 genome, and the change of profile of the gene expression of the mutant was analyzed by high resolution 2-DE followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), tandem MS and microarray analysis. Eleven and 37 genes were upregulated and downregulated in the mutant respectively, either transcriptionally or translationally. Expression level of pfr and hp1588 that were decreased on protein level in the mutant was confirmed by RT-PCR analysis.

REFERENCES

1). Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984; 1:1311–5.
crossref
2). Nomura A, Stemmermann GN, Chyou PH, Perez-perez GI, Blaser MJ. Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann Intern Med. 1994; 120:977–81.
3). Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med. 1991; 325:1132–6.
4). No authors listed. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994. IARC monogr eval carcinog risks hum. 1994; 61:1–241.
5). Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science. 1999; 284:1328–33.
6). Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997; 388:539–47.
7). Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999; 397:176–80.
8). Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nat Genet. 1999; 21:33–7.
crossref
9). Seyler RW Jr, Olson JW, Maier RJ. Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect Immun. 2001; 69:4034–40.
10). Ramarao N, Gray-Owen SD, Meyer TF. Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity. Mol Microbiol. 2000; 38:103–13.
11). Basu M1, Czinn SJ, Blanchard TG. Absence of catalase reduces long-term survival of Helicobacter pylori in macrophage phagosomes. Helicobacter. 2004; 9:211–6.
12). Wang G, Alamuri P, Maier RJ. The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol. 2006; 61:847–60.
13). Cho MJ, Lee SG, Lee KH, Song JY, Lee WK, Baik SC, et al. Comparison of gene expression patterns between Helicobacter pylor 26695 and its superoxide dismutase isogenic mutant. J Bacteriol Virol. 2013; 43:279–89.
14). Alting-Mees MA, Short JM. pBluescript II: gene mapping vectors. Nucleic Acids Res. 1989; 17:9494.
crossref
15). Song JY, Park SG, Kang HL, Lee WK, Cho MJ, Park JU, et al. pHP489, a Helicobacter pylori small cryptic plasmid, harbors a novel gene coding for a replication initiation protein. Plasmid. 2003; 50:236–41.
16). Wang Y, Roos KP, Taylor DE. Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J Gen Microbiol. 1993; 139:2485–93.
17). O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975; 250:4007–21.
18). Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248–54.
crossref
19). Heukeshoven J, Dernick R. Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis. 1988; 9:28–32.
crossref
20). Park JW, Song JY, Hwang HR, Park HJ, Youn HS, Seo JH, et al. Proteomic analysis of thiol-active proteins of Helicobacter pylori 26695. J Bacteriol Virol. 2012; 42:211–23.
21). Chuang SE, Daniels DL, Blattner FR. Global regulation of gene expression in Escherichia coli. J Bacteriol. 1993; 175:2026–36.
22). Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997; 278:631–7.
crossref
23). Harris AG, Hinds FE, Beckhouse AG, Kolesnikow T, Hazell SL. Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated ‘KatA-associated protein’, KapA (HP0874). Microbiology. 2002; 148:3813–25.
24). Yamada H, Shimizu S, Shimada H, Tani Y, Takahashi S, Ohashi T. Production of D-phenylglycine-related amino acids by immobilized microbial cells. Biochimie. 1980; 62:395–9.
crossref
25). Baik SC, Kim KM, Song SM, Kim DS, Jun JS, Lee SG, et al. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol. 2004; 186:949–55.
26). Hochhauser SJ, Weiss B. Escherichia coli mutants deficient in deoxyuridine triphosphatase. J Bacteriol. 1978; 134:157–66.
27). Vicente JB, Ehrenkaufer GM, Saraiva LM, Teixeira M, Singh U. Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol. 2009; 11:51–69.
28). Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford: Clarendon Press;1989.
29). Slade D, Radman M. Oxidative Stress Resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev. 2011; 75:133–91.
30). Skouloubris S, Labigne A, De Reuse H. Identification and characterization of an aliphatic amidase in Helicobacter pylori. Mol Microbiol. 1997; 25:989–98.
31). Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006; 52:601–23.
crossref
32). Bereswill S, Waidner U, Odenbreit S, Lichte F, Fassbinder F, Bode G, et al. Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. Microbiology. 1998; 144:2505–16.
33). Nakamura A, Park A, Nagata K, Sato EF, Kashiba M, Tamura T, et al. Oxidative cellular damage associated with transformation of Helicobacter pylori from a bacillary to a coccoid form. Free Radic Biol Med. 2000; 28:1611–8.
34). Wang G, Maier RJ. An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect Immun. 2004; 72:1391–6.
35). Waidner B, Greiner S, Odenbreit S, Kavermann H, Velayudhan J, Stähler F, et al. Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun. 2002; 70:3923–9.

Figure 1.
Construction of plasmids for knock-out mutant.
jbv-44-177f1.tif
Figure 2.
Confirmation of katA deficiency. top, H. pylori 26695; bottom, katA mutant.
jbv-44-177f2.tif
Figure 3.
Growth curve of H. pylori 26695 and isogenic mutants at thin layer culture condition.
jbv-44-177f3.tif
Figure 4.
Comparison of normalized gel images of wild type and kat isogenic mutant. The proteins were separated on an IPG strip of pH 5.0∼8.0 and subsequently on a 12.5% SDS-PAGE and then detected by silver staining. The original gel size was 18×20×0.15. (A) Wild type. (B) kat isogenic mutant.
jbv-44-177f4.tif
Figure 5.
Comparison of expression of genes in wild type H. pylori and in katA mutant. (A) RT-PCR analysis of pfr and hp1588. (B, C) expression of two genes. Levels were measured by 2-DE, microarray and RT-PCR.
jbv-44-177f5.tif
Table 1.
Strains and plasmids used in this study
DNAs and strains Genotype, phenotype and sequence Reference
Strains
H. pylori 26695 wild type 6
H. pylori 26695 katA katA-deficient mutant this study
Plasmids
 pBluescript II ColEI ori; bla 14
 pBkatA pBluescipt II; katA this study
 pBkatK pBluescipt II; katA::ahpA-III this study
 pBHP489KsK E. coli-H. pylori shuttle vector containing kanamycine marker (aphA-III) 15
Oligomers (product size)
katA (1,513 bp) F; aaccatggttaataaagatgtg
R; cttttttgtgtggtgcatgtc
6
pfr (357 bp) F; gattatcgctaccggtggta
R; tcgcccttgatttcttccac
6
hp1588 (305 bp) F; caacgcaggaaaggaaacca
R; atcaattgatgcaccacgcc
6
Table 2.
List of up or down-regulated proteins of katA isogenic mutant of H. pylori 26695 by using tandem MS
SSP no Protein name Accession no mw pI Amino acid seq Score HP no
0102b Urease accessory protein (UreG) gi:15644698 21,824 4.7 R.EAFNLIFKPGFSTAK.V
R.AKEGLDDVIAWIK.R
K.IDLAPYVGADLK.V
45
33
55
0068
0903b Histidine kinase (CheA) gi:15645020 89,704 4.7 K.NGDKIPDAILVDIEMPK.M
K.ITPDIMDVVLR.S
K.VNITTLMNESENTK.S
26
26
27
0903
1003b Biotin carboxyl carrier protein (FabE) gi:15644999 17,122 5.2 K.VVSVEVGDAQPVEYGTK.L
K.EDFVLSPMVGTFYHAPSPGAEPYVK.V
75
19
0371
1101b Adenylate kinase (Adk) gi:15645243 21,230 5.0 K.GIILIDGYPR.S
R.VFLDPLGEIQNFYK.N
39
53
0618
1102b Biotin carboxyl carrier protein (FabE) gi:15644999 17,122 5.2 K.VVSVEVGDAQPVEYGTK.L
K.EDFVLSPMVGTFYHAPSPGAEPYVK.V
64
44
0371
1103b Adenylate kinase (Adk) gi:15645243 21,230 5.0 K.ADMVEVFNFR.V
K.GIILIDGYPR.S
R.VFLDFLGEIQNFYK.N
37
49
66
0618
2201a Hydrogenase expression/formation protein (HypB) gi:15645518 27,179 5.2 R.GTLFINPQTK.V
K.TTMLENLADFK.D
K.EGLYVLNFMSSPGSGK.T
19
17
68
0900
2701a GTP-binding protein, fusA-homolog (YihK) gi:15645108 66,634 5.0 K.ALADEITLK.I
K.INIIDTPGHADFGGEVER
K.QLDFPVVYAAAR.D
30
42
55
0480
4302a Recombinase A (RecA) gi:15644782 37,555 5.5 R.GLSLAGNQVLTR.T
R.SGGIDLVVVDSVAALTPK.A
K.AEIDGDMGDQHVGLQAR.L
63
59
75
0153
5201b Hypothetical protein HP1588 gi:15646195 28,287 5.2 K.LLPGNEVIGPAIVESDATTFVIPK.G
R.QALSAATLTLFK.M
R.SSSQLLYSEIIVAGR.V
33
46
67
1588
8701a Hydantoin utilization protein A (HyuA) gi:15645318 78,483 6.9 R.GVVATQKPVIPVEK.E
R.TIVSGPIGGVIGSK.L
R.LVLSLPLVAMDSVGAGAGSFVR.I
K.IIQDAWDELTLK.V
24
31
26
24
0695
8703a Hydantoin utilization protein A (HyuA) gi:15645318 78,483 6.9 K.YDDPLIPLKR.I
R.TIVSGPIGGVIGSK.L
44
59
0695

a) Increased protein spots in katA isogenic mutant.

b) Decreased protein spots in kat isogenic mutant. SSP no, standard spot number; mw, molecular weight; pI,; HP no, gene number of H. pylori 26695.

Table 3.
List of up or down-regulated proteins under katA isogenic mutant of H. pylori 26695 by using MALDI-TOF
SSP no Protein name Accession no mw pI HP no
4002b Nonheme iron-containing ferritin (Pfr) gi:15645277 19,155 5.49 0653
4403b Pyruvate: ferredoxin oxidoreductase, alpha Subunit (PorA) gi:15645724 44,613 5.81 1110
5302b GTP-binding protein (Gtp1) gi:15645194 40,444 5.53 0569
7009b Co-chaperone (GroES) gi:15644644 12,860 6.59 0011
8108b Adhesin-thiol peroxidase (TagD) gi:15645018 18,161 8.18 0390
9509a Fumarase (FumC) gi:15645938 50,844 7.29 1325

a) Increased protein spots in katA isogenic mutant.

b) Decreased protein spots in kat isogenic mutant. SSP no, standard spot number; mw, molecular weight; pI,; HP no, gene number of H. pylori 26695.

Table 4.
List of genes whose expression was increased over two-fold in kat isogenic mutant compared with wild type H. pylori 26695
HP No. Increasing level (fold)* Gene name
HP0686 2.018 Iron (III) dicitrate transport protein (fecA)
HP0810 2.056 Conserved hypothetical protein
HP0865 2.452 Deoxyuridine 5′-triphosphate nucleotidohydrolase (dut)
HP0870 2.457 Flagellar hook (flgE)
HP0871 3.109 CDP-diglyceride hydrolase (cdh)
HP1174 2.982 Glucose/galactose transporter (gluP)

* Genes of which increasing level was not higher than 2 folds were not shown in this list. Bold, also increased in sodB-deficient mutant.

Table 5.
List of genes whose expression was decreased over twofold in katA isogenic mutant compared with wild type H. pylori 26695
HP No. Decreasing level (fold)* Gene name
HP0004 0.392 Carbonic anhydrase (icfA)
HP0102 0.330 Conserved hypothetical protein
HP0119 0.431 Hypothetical protein
HP0373 0.481 Conserved hypothetical protein
HP0408 0.450 Hypothetical protein
HP0415 0.463 Conserved hypothetical integral membrane protein
HP0439 0.442 Hypothetical protein
HP0503 0.162 Hypothetical protein
HP0513 0.431 Hypothetical protein
HP0653 0.543 Nonheme iron-containing ferritin (Pfr)
HP0587 0.377 Aminodeoxychorismate lyase (pabC)
HP0600 0.351 Multidrug resistance protein (spaB)
HP0603 0.469 Hypothetical protein
HP0614 0.466 Hypothetical protein
HP0689 0.397 Hypothetical protein
HP0702 0.365 Hypothetical protein
HP0704 0.440 Hypothetical protein
HP0712 0.185 Hypothetical protein
HP0767 0.499 Hypothetical protein
HP0784 0.490 Hypothetical protein
HP0889 0.397 Iron (III) dicitrate ABC transporter permease protein (fecD)
HP0981 0.481 Exonuclease VII-like protein (xseA)
HP1142 0.420 Hypothetical protein
HP1227 0.477 Cytochrome c553
HP1238a 0.421 Aliphatic amidase (amiE)
HP1390 0.287 Hypothetical protein
HP1426 0.478 Conserved hypothetical protein
HP1534 0.469 IS605 transposase (tnpB)
HP1588 0.577 Hypothetical protein

a Genes of which decreasing level was not lower than 0.6 were not shown in this list. Bold, also decreased in sodB-deficient mutant. a, increased in sodB-deficient mutant.

Table 6.
Clusters of orthologous groups of genes (COGs) of 32 genes 2-fold changes in expression levels of katA mutants compared with wild type H. pylori 26695.
Gene function classification Gene code
Cell envelope biogenesis, outer membrane proteins HP0102 HP0415
Cell motility and secretion HP0870
Inorganic ion transport and metabolism HP0686 HP0889
Intracellular trafficking, secretion, and vesicular transport HP0439
Defense mechanisms HP0600
DNA replication, recombination and repair HP0689 HP0810 HP0981 HP1534
Energy production and conversion HP1227
General function prediction only HP1238
Carbohydrate transport and metabolism HP1174
Function unknown HP0513 HP0712 HP1142 HP1426 HP1588
Not in COGs HP0004 HP0119 HP0373 HP0408 HP0503
HP0587 HP0603 HP0614 HP0702 HP0704
HP0767 HP0784 HP1390
Table 7.
Tentative annotation of 7 hypothetical proteins by the clustering analysis.
HP No. Tentative annotation
HP0439 Ribosomal protein
HP0102 tRNA synthetase
HP0689 tRNA synthetase
HP0712 Purine-nucleoside phosphorylase
HP0810 Lipid A disaccharide synthetase
HP1142 Signal recognition particle protein
HP1588 Riboflavin synthase beta chain
TOOLS
Similar articles