Journal List > J Bacteriol Virol > v.44(2) > 1034125

Lee and Park: Mechanism of Action of Antimicrobial Peptides Against Bacterial Membrane

Abstract

Resistance to antibiotics is becoming a very serious problem, with so-called superbugs exhibiting resistance to nearly all conventional antibiotic drugs. Consequently, these organisms often cause severe illness and even death. Alternatives to conventional antibiotics are antimicrobial peptides (AMPs). These widely expressed short peptides, which have been isolated from insects, plants, marine organisms and mammals, including humans, show strong antimicrobial activity against both Gram-negative and Gram-positive bacteria. Most AMPs act by disrupting the bacterial membrane through “Barrel-stave”, “Toroidal pore”, “carpet” mechanism. In addition, AMPs may prevent septic shock through strongly binding lipopolysaccharides and lipoteichoic acid located on the bacterial membrane. The action mechanisms of AMP to minimize the likelihood developing resistance to the peptides would be particular advantage. For these reasons, we anticipate that AMPs will replace conventional antibiotic drugs in a variety of contexts.

REFERENCES

1). Zhang QG. Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients. Evol Appl. 2014; 7:394–402.
crossref
2). Grummet JP, Weerakoon M, Huang S, Lawrentschuk N, Frydenberg M, Moon DA, et al. Sepsis and ‘superbugs’: should we favour the transperineal over the transrectal approach for prostate biopsy? BJU Int. 2013.
crossref
3). Nordmann P, Naas T, Fortineau N, Poirel L. Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010. Curr Opin Microbiol. 2007; 10:436–40.
4). Xu ZQ, Flavin MT, Flavin J. Combating multidrug-resistant Gram-negative bacterial infections. Expert Opin Investig Drugs. 2014; 23:163–82.
crossref
5). Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009; 5:e1000354.
6). Adav SS, Lin JC, Yang Z, Whiteley CG, Lee DJ, Peng XF, et al. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol Adv. 2010; 28:255–80.
crossref
7). Tsai MW, Lee DJ, Lai JY. Mass transfer limit of fluorescent dyes during multicolor staining of aerobic granules. Appl Microbiol Biotechnol. 2008; 78:907–13.
crossref
8). Roscia G, Falciani C, Bracci L, Pini A. The development of antimicrobial peptides as new antibacterial drugs. Curr Protein Pept Sci. 2013; 14:641–9.
crossref
9). Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LD, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013; 4:353.
crossref
10). Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013; 6:1543–75.
crossref
11). Lee JK, Ramamourthy Gopal, Park Y. The function and application of antimicrobial peptides. Appl Chem Eng. 2011. 119–24.
12). Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005; 3:238–50.
crossref
13). Payne JW, Jakes R, Hartley BS. The primary structure of alamethicin. Biochem J. 1970; 117:757–66.
crossref
14). Hall JE, Vodyanoy I, Balasubramanian TM, Marshall GR. Alamethicin. A rich model for channel behavior. Biophys J. 1984; 45:233–47.
crossref
15). Rinehart KL Jr, Cook JC Jr, Meng H, Olson KL, Pandey RC. Mass spectrometric determination of molecular formulas for membrane-modifying antibiotics. Nature. 1977; 269:832–3.
crossref
16). Amiche M, Seon AA, Wroblewski H, Nicolas P. Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family. Eur J Biochem. 2000; 267:4583–92.
crossref
17). Wang KF, Nagarajan R, Camesano TA. Antimicrobial peptide alamethicin insertion into lipid bilayer: A QCM-D exploration. Colloids Surf B Biointerfaces. 2014; 116:472–81.
crossref
18). Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987; 84:5449–53.
crossref
19). Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta. 1997; 1327:119–30.
crossref
20). Matsuzaki K, Sugishita K, Fujii N, Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995; 34:3423–9.
crossref
21). Matsuzaki K, Nakayama M, Fukui M, Otaka A, Funakoshi S, Fujii N, et al. Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry. 1993; 32:11704–10.
crossref
22). Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014; 5:213–8.
23). Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999; 1462:1–10.
crossref
24). Wieprecht T, Dathe M, Schümann M, Krause E, Beyermann M, Bienert M. Conformational and functional study of magainin 2 in model membrane environments using the new approach of systematic double-D-amino acid replacement. Biochemistry. 1996; 35:10844–53.
crossref
25). Matsuzaki K, Nakamura A, Murase O, Sugishita K, Fujii N, Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 1997; 36:2104–11.
crossref
26). Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, et al. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 1998; 37:11856–63.
crossref
27). Matsuzaki K, Mitani Y, Akada KY, Murase O, Yoneyama S, Zasloff M, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry. 1998; 37:15144–53.
crossref
28). Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999; 1462:1–10.
crossref
29). Rana FR, Blazyk J. Interactions between the antimicrobial peptide, magainin 2, and Salmonella typhimurium lipopoly-saccharides. FEBS Lett. 1991; 293:11–5.
30). Rana FR, Macias EA, Sultany CM, Modzrakowski MC, Blazyk J. Interactions between magainin 2 and Salmonella typhimurium outer membranes: effect of lipopolysaccharide structure. Biochemistry. 1991; 30:5858–66.
crossref
31). Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, et al. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem. 1989; 106:663–8.
32). Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta. 1997; 1327:119–30.
crossref
33). Imura Y, Nishida M, Ogawa Y, Takakura Y, Matsuzaki K. Action mechanism of tachyplesin I and effects of PEGylation. Biochim Biophys Acta. 2007; 1768:1160–9.
crossref
34). Imura Y, Nishida M, Matsuzaki K. Action mechanism of PEGylated magainin 2 analogue peptide. Biochim Biophys Acta. 2007; 1768:2578–85.
crossref
35). Han E, Lee H. Effects of PEGylation on the binding interaction of magainin 2 and tachyplesin I with lipid bilayer surface. Langmuir. 2013; 29:14214–21.
crossref
36). Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci U S A. 1991; 88:3792–6.
crossref
37). Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004; 83:249–89.
crossref
38). Anghel R, Jitaru D, Bădescu L, Bădescu M, Ciocoiu M. The cytotoxic effect of magainin II on the MDA-MB-231 and M14K tumour cell lines. Biomed Res Int. 2013; 2013:831709.
crossref
39). Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995; 374:1–5.
crossref
40). Zaiou M, Gallo RL. Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med (Berl). 2002; 80:549–61.
crossref
41). Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, et al. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A. 1994; 91:11035–9.
crossref
42). Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S, Wigzell H, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 1997; 272:15258–63.
crossref
43). Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol. 2002; 119:1090–5.
crossref
44). Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001; 97:3951–9.
crossref
45). Zaiou M, Nizet V, Gallo RL. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol. 2003; 120:810–6.
crossref
46). Murakami M, Ohtake T, Dorschner RA, Gallo RL. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res. 2002; 81:845–50.
crossref
47). Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol. 2004; 172:3070–7.
crossref
48). Henzler Wildman KA, Lee DK, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry. 2003; 42:6545–58.
crossref
49). Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys J. 2010; 98:248–57.
crossref
50). Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994; 12:593–633.
51). Zlotnik A, Morales J, Hedrick JA. Recent advances in chemokines and chemokine receptors. Crit Rev Immunol. 1999; 19:1–47.
crossref
52). Bals R, Weiner DJ, Meegalla RL, Wilson JM. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest. 1999; 103:1113–7.
crossref
53). Frohm Nilsson M, Sandstedt B, Sørensen O, Weber G, Borregaard N, Ståhle-Bäckdahl M. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun. 1999; 67:2561–6.
crossref
54). Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem. 1998; 273:3718–24.
crossref
55). Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. 1999; 341:501–13.
crossref
56). Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, et al. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun. 2000; 68:2748–55.
crossref
57). Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002; 71:635–700.
crossref
58). Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, et al. Structure and function of lipopolysaccharide binding protein. Science. 1990; 249:1429–31.
crossref
59). Tobias PS, Ulevitch RJ. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology. 1993; 187:227–32.
crossref
60). Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990; 249:1431–3.
crossref
61). Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994; 179:269–77.
crossref
62). Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol. 2000; 165:3541–4.
63). Lee HK, Dunzendorfer S, Tobias PS. Cytoplasmic domain-mediated dimerizations of toll-like receptor 4 observed by beta-lactamase enzyme fragment complementation. J Biol Chem. 2004; 279:10564–74.
64). Cohen J. The immunopathogenesis of sepsis. Nature. 2002; 420:885–91.
crossref
65). Hardaway RM. A review of septic shock. Am Surg. 2000; 66:22–9.
66). Kirikae T, Hirata M, Yamasu H, Kirikae F, Tamura H, Kayama F, et al. Protective effects of a human 18-kilodalton cationic antimicrobial protein (CAP18)-derived peptide against murine endotoxemia. Infect Immun. 1998; 66:1861–8.
crossref
67). Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, et al. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14 (+) cells. J Immunol. 2001; 167:3329–38.
68). Sawa T, Kurahashi K, Ohara M, Gropper MA, Doshi V, Larrick JW, et al. Evaluation of antimicrobial and lipopolysaccharide-neutralizing effects of synthetic CAP18 fragment against Pseudomonas aeruginosa in a mouse model. Antimcrob Agents Chemother. 1998; 42:3269–75.
69). Lu N, Yang K, Yuan B, Ma Y. Molecular response and cooperative behavior during the interactions of melittin with a membrane: dissipative quartz crystal microbalance experiments and simulations. J Phys Chem B. 2012; 116:9432–8.
crossref
70). Habermann E, Reiz KG. On the biochemistry of bee venom peptides, melittin and apamin. Biochem Z. 1965; 343:192–203.
71). Gevod VS, Birdi KS. Melittin and the 8–26 fragment. Differences in ionophoric properties as measured by monolayer method. Biophys J. 1984; 45:1079–83.
crossref
72). Sessa G, Freer JH, Colacicco G, Weissmann G. Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem. 1969; 244:3575–82.
73). Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta. 1999; 1462:71–87.
crossref
74). Lauterwein J, Brown LR, W?thrich K. High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim Biophys Acta. 1980; 622:219–30.
crossref
75). Drake AF, Hider RC. The structure of melittin in lipid bilayer membranes. Biochim Biophys Acta. 1979; 555:371–3.
crossref
76). Ladokhin AS, White SH. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol. 1999; 285:1363–9.
77). Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol. 1997; 156:197–211.
crossref
78). Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta. 2006; 1758:1529–39.
crossref
79). Killion JJ, Dunn JD. Differential cytolysis of murine spleen, bone-marrow and leukemia cells by melittin reveals differences in membrane topography. Biochem Biophys Res Commun. 1986; 139:222–7.
crossref
80). Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther. 2007; 115:246–70.
crossref
81). Jerala R, Porro M. Endotoxin neutralizing peptides. Curr Top Med Chem. 2004; 4:1173–84.
crossref
82). Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Barra D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem. 1996; 242:788–92.
crossref
83). Krishnakumari V, Nagaraj R. Antimicrobial and hemolytic activities of crabrolin, a 13-residue peptide from the venom of the European hornet, Vespa crabro, and its analogs. J Pept Res. 1997; 50:88–93.
crossref
84). Argiolas A, Pisano JJ. Isolation and characterization of two new peptides, mastoparan C and crabrolin, from the venom of the European hornet, Vespa crabro. J Biol Chem. 1984; 259:10106–11.
crossref
85). Kuchler K, Kreil G, Sures I. The genes for the frog skin peptides GLa, xenopsin, levitide and caerulein contain a homologous export exon encoding a signal sequence and part of an amphiphilic peptide. Eur J Biochem. 1989; 179:281–5.
crossref
86). Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R. SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett. 1999; 463:58–62.
crossref
87). Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. 1999; 341:501–13.
crossref
88). Chen Q, Wade D, Kurosaka K, Wang ZY, Oppenheim JJ, Yang D. Temporin A and related frog antimicrobial peptides use formyl peptide receptor-like 1 as a receptor to chemoattract phagocytes. J Immunol. 2004; 173:2652–9.
crossref
89). Rosenfeld Y, Shai Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta. 2006; 1758:1513–22.
crossref
90). Trent MS. Biosynthesis, transport, and modification of lipid A. Biochem Cell Biol. 2004; 82:71–86.
crossref
91). Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994; 8:217–25.
crossref
92). Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, et al. Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J. 2004; 380:859–65.
93). Weidenmaier C, Kokai-Kun JF, Kulauzovic E, Kohler T, Thumm G, Stoll H, et al. Differential roles of sortaseanchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. Int J Med Microbiol. 2008; 298:505–13.
94). Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in grampositive bacteria. Microbiol Mol Biol Rev. 2003; 67:686–723.
95). Fischer W. Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol. 1988; 29:233–302.
crossref
96). Xia G, Kohler T, Peschel A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol. 2010; 300:148–54.
97). Su SC, Hua KF, Lee H, Chao LK, Tan SK, Lee H, et al. LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta. 2006; 374:106–15.
crossref
98). Liljeroos M, Vuolteenaho R, Morath S, Hartung T, Hallman M, Ojaniemi M. Bruton's tyrosine kinase together with PI 3-kinase are part of Toll-like receptor 2 multiprotein complex and mediate LTA induced Toll-like receptor 2 responses in macrophages. Cell Signal. 2007; 19:625–33.
crossref
99). Lee IT, Wang SW, Lee CW, Chang CC, Lin CC, Luo SF, et al. Lipoteichoic acid induces HO-1 expression via the TLR2/MyD88/c-Src/NADPH oxidase pathway and Nrf2 in human tracheal smooth muscle cells. J Immunol. 2008; 181:5098–110.
crossref
100). Nell MJ, Tjabringa GS, Vonk MJ, Hiemstra PS, Grote JJ. Bacterial products increase expression of the human cathelicidin hCAP-18/LL-37 in cultured human sinus epithelial cells. FEMS Immunol Med Microbiol. 2004; 42:225–31.
crossref
101). Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood. 2000; 96:3086–93.

Figure 1.
Action mechanism of antimicrobial peptides (AMPs) on the bacterial membrane.
jbv-44-140f1.tif
Figure 2.
Binding affinity of antimicrobial peptide on the lipopolysaccharides (LPS) and lipoteichoic acid (LTA) in membranes of Gram negative and Gram-positive bacteria.
jbv-44-140f2.tif
Table 1.
Characterization, activity, and mechanism of antimicrobial peptides.
Peptides Characterization Activity Mechanism
Alamethicin • Extraction of fungus Trichoderma viride • Antimicrobial activity and anti-fungal activity • Amphipathic α-helical/cyclic structure (Barrel-stave model)
Magainin-2 • Identified in the Skin of the African clawed frog Xenopus laeyis • Antimicrobial activity
• Lower cytotoxicity
• Electrostatic interaction to microorganism
• Hydrophobic and amphipathic α-helical structure (Toroidal pore)
Cathelicidin-LL-37 • Found at human mucosal surfaces
• Cationic, amphipathic host defense peptide
• Antimicrobial activity and lower hemolysis and cytotoxicity
• Neutralizing activity (LPS, LTA)
• Inhibition of bacterial biofilms
• Anti-infective and immunomodulatory activity
• Presence of membranes: α-helical structure
• Membrane disruption and insertion into the bacteria membrane (Toroidal pore)
Melittin • Extraction of European honey bee Apis mellifera
• Hydrophobic
• Antimicrobial activity
• Hemolysis and cytotoxicity
• Presence of membranes: α-helix structure
• Amphipathic structure
• Disrupts to cell membranes (Carpet model)
Temporins • Identified in the skins of the European frogs R. esculenta and R. temporaria • Active mainly against Gram-positive bacteria, Candia
• Not toxic to hRBCs
• Cancer activity
• Endotoxin neutralization activity
• Formation of transmembrane pores rather than causing a detergent-like disruption of the cell membrane
• Hydrophobic and α-helical
• LPS neutralization activity
TOOLS
Similar articles