Journal List > J Bacteriol Virol > v.43(2) > 1034112

Lee, Shin, Kim, Choi, and Inn: Sensing DNA Viruses and Bacteria by Intracellular DNA Sensors

Abstract

The innate immune system confers first-line defense against various pathogens including bacteria and viruses. Early detection of invading pathogens by the host depends on a limited number of specific pattern recognition receptors (PRRs) that detect pathogen associated molecular patterns (PAMPs) and activate signal transduction cascades that lead to activation of defense mechanisms. Among those sensors, RIG-I-like receptors (RLRs) play crucial roles in the detection of viruses by recognizing intracellular viral patterns such as viral RNAs to induce type-I interferon production. The discovery of intracellular RNA sensing mechanism by RIG-I prompted the investigations to find out intracellular DNA sensors. Recently, several proteins including DAI, AIM2, IFI16, and cGAS have been suggested as DNA sensing molecules to detect DNA viruses and bacteria, suggesting there are multiple receptors for microbial DNA. In this review, we discuss the current our understanding of sensing microbial DNA and subsequent induction of immune responses.

REFERENCES

1). Ronald PC, Beutler B. Plant and animal sensors of conserved microbial signatures. Science. 2010; 330:1061–4.
crossref
2). Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009; 21:317–37.
crossref
3). Jun EJ, Kim YK. Activation of innate immune system during viral infection: Role of pattern-recognition receptors (PRRs) in viral Infection. J Bacteriol Virol. 2009; 39:145–57.
crossref
4). Yuk JM, Jo EK. Toll-like receptors and innate immunity. J Bacteriol Virol. 2011; 41:225–35.
crossref
5). Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004; 5:730–7.
crossref
6). Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006; 441:101–5.
crossref
7). Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000; 408:740–5.
crossref
8). Spies B, Hochrein H, Vabulas M, Huster K, Busch DH, Schmitz F, et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol. 2003; 171:5908–12.
crossref
9). Heit A, Maurer T, Hochrein H, Bauer S, Huster KM, Busch DH, et al. Cutting edge: Toll-like receptor 9 expression is not required for CpG DNA-aided cross-presentation of DNA-conjugated antigens but essential for cross-priming of CD8 T cells. J Immunol. 2003; 170:2802–5.
crossref
10). Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity. 2006; 24:93–103.
crossref
11). Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol. 2006; 7:40–8.
crossref
12). Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009; 461:788–92.
crossref
13). Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature. 2008; 451:725–9.
crossref
14). Miyahira AK, Shahangian A, Hwang S, Sun R, Cheng G. TANK-binding kinase-1 plays an important role during in vitro and in vivo type I IFN responses to DNA virus infections. J Immunol. 2009; 182:2248–57.
15). Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013; 339:786–91.
crossref
16). Delaloye J, Roger T, Steiner-Tardivel QG, Le Roy D, Knaup Reymond M, Akira S, et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 2009; 5:e1000480.
crossref
17). Muruve DA, Pétrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008; 452:103–7.
crossref
18). Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007; 448:501–5.
crossref
19). Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A. 2008; 105:5477–82.
crossref
20). Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol. 2009; 10:1065–72.
crossref
21). Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell. 2009; 138:576–91.
crossref
22). Inn KS, Lee SH, Rathbun JY, Wong LY, Toth Z, Machida K, et al. Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J Virol. 2011; 85:10899–904.
crossref
23). Valentine R, Smith GL. Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J Gen Virol. 2010; 91:2221–9.
crossref
24). Jehl SP, Nogueira CV, Zhang X, Starnbach MN. IFNgamma inhibits the cytosolic replication of Shigella flexneri via the cytoplasmic RNA sensor RIG-I. PLoS pathog. 2012; 8:e1002809.
25). Kim T, Pazhoor S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V, et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A. 2010; 107:15181–6.
crossref
26). Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011; 12:959–65.
crossref
27). Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y, et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol. 2010; 11:487–94.
28). Hong S, Park S, Yu JW. Pyrin domain (PYD)-containing inflammasome in innate immunity. J Bacteriol Virol. 2011; 41:133–46.
crossref
29). Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009; 458:514–8.
crossref
30). Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009; 458:509–13.
crossref
31). Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009; 10:266–72.
crossref
32). Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol. 2010; 11:385–93.
33). Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol. 2010; 11:395–402.
crossref
34). Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010; 11:997–1004.
crossref
35). Kis-Toth K, Szanto A, Thai TH, Tsokos GC. Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response. J Immunology. 2011; 187:1222–34.
crossref
36). Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe. 2011; 9:363–75.
crossref
37). Hengge R. Cyclic-di-GMP reaches out into the bacterial RNA world. Sci Signal. 2010; 3:pe44.
crossref
38). Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science. 2010; 328:1703–5.
39). Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011; 478:515–8.
crossref
40). Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol. 2012; 13:1155–61.
crossref
41). Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013; 339:826–30.
crossref
42). Yoshida H, Okabe Y, Kawane K, Fukuyama H, Nagata S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat Immunol. 2005; 6:49–56.
43). Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med. 2005; 202:1333–9.
crossref

Figure 1.
Induction of type-I interferon by intracellular DNA sensors. It has been shown that intracellular DNA sensors including DNA-dependent activator of interferon-regulatory factors (DAI), RNA polymerase III (RNA Pol III), Leucine rich repeat interacting protein 1 (LRRFIP1), Cyclic GMP-AMP synthase (cGAS), (DExD/H)-box helicase 9/36 (DHX9/36) can induce type-I interferon production upon recognition of pathogen-derived DNA.
jbv-43-77f1.tif
Figure 2.
Activation of inflammasome signaling by intracellular DNA sensors. Absent in melanoma 2 (AIM2) and gamma-interferon-inducible protein 16 (IFI16) activate inflammasome signaling pathway leading to caspase-1 activation upon recognition of pathogen-derived DNA.
jbv-43-77f2.tif
Table 1.
List of cytosolic DNA sensors.
DNA sensors Related pathogens Ligand
Type-I interferon induction DAI1
RNA Pol III2
DHX9/DHX363
DDX414
LRRFIP15
cGAS6
HSV1a
HSV1, Adenovirus, EBVb, L. pneumophiliac
HSV1
HSV1, Adenovirus
VSVd, L. monocytogenese
HSV1
dsDNA
dsDNA
CpG DNA
dsDNA
dsDNA, dsRNA
dsDNA
Inflammasome activation AIM27
IFI168
F. tulalensisf, L. monocytogenes, VVg, mCMVh
HSV1, KSHVi
dsDNA
dsDNA

1DNA-dependent activator of interferon-regulatory factors, 2RNA polymerase III, 3(DExD/H)-box helicase 9/36, 4DEAD box protein 41, 5Leucine rich repeat interacting protein 1, 6Cyclic GMP-AMP synthase, 7Absent in melanoma 2, 8gamma-interferon-inducible protein 16.

a Herpes simplex virus 1

b Epstein-Barr virus

c Legionella pneumophilia

d Vesicular stomatitis virus

e Listeria monocytogenes

f Francisella tulalensis

g Vaccinia virus

h mouse cytomegalovirus

i Kaposi's sarcoma-associated herpesvirus.

TOOLS
Similar articles