Journal List > J Bacteriol Virol > v.43(4) > 1034103

Kim and Lee: Codon Usage Bias of Human Cytomegalovirus Genes with Different Evolutionary Conservancy

Abstract

Human cytomegalovirus (HCMV) is a member of beta-herpesvirus and contains a double-stranded genome with longer than 230 Kbp. HCMV infection of human is mostly asymptomatic, but often causes fatal diseases in immunocompromised people. In this study, codon usages of HCMV genes were analyzed and attempted to correlate with evolutionary conservancy. Core genes are the most conserved genes common among herpesvirus family, β-herpes genes are common to β-herpesviruses, and CMV genes are the least conserved found only in CMVs. Core genes had higher codon adaptation index (CAI) and GC content of silent 3rd codon position (GC3s) values and lower effective number of codons (Nc) and Nc/GC3s values than CMV genes. The average length of core genes was statistically longer than CMV genes, and core genes were found to be less varied than CMV genes. β-herpes genes could be placed between core and CMV genes. Higher CAI and GC3s values along with lower Nc and Nc/GC3s values are suggestive of higher codon usage bias and more adaptation to host cells. Thus it is concluded that core genes of HCMV are more biased in codon usage and adapted to host cells compared to CMV genes.

REFERENCES

1). Landolfo S, Gariglio M, Gribaudo G, Lembo D. The human cytomegalovirus. Pharmacol Ther. 2003; 98:269–97.
crossref
2). Mocarski ES, Shenk T, Pass RF. Cytomegalovirus. Fields Virology;. 2007. 2702–72.
3). Khanna R, Diamond DJ. Human cytomegalovirus vaccine: time to look for alternative options. Trends Mol Med. 2006; 12:26–33.
crossref
4). Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, et al. Genetic content of wild-type human cytomegalovirus. J Gen Virol. 2004; 85:1301–12.
crossref
5). Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, et al. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A. 2003; 100:14223–8.
crossref
6). Rigoutsos I, Novotny J, Huynh T, Chin-Bow ST, Parida L, Platt D, et al. In silico pattern-based analysis of the human cytomegalovirus genome. J Virol. 2003; 77:4326–44.
crossref
7). Vetsigian K, Goldenfeld N. Genome rhetoric and the emergence of compositional bias. Proc Natl Acad Sci U S A. 2009; 106:215–20.
crossref
8). Bouquet J, Cherel P, Pavio N. Genetic characterization and codon usage bias of full-length Hepatitis E virus sequences shed new lights on genotypic distribution, host restriction and genome evolution. Infect Genet Evol. 2012; 12:1842–53.
crossref
9). Shackelton LA, Parrish CR, Holmes EC. Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol. 2006; 62:551–63.
crossref
10). Jenkins GM, Holmes EC. The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res. 2003; 92:1–7.
crossref
11). Karlin S, Blaisdell BE, Schachtel GA. Contrasts in codon usage of latent versus productive genes of Epstein-Barr virus: data and hypotheses. J Virol. 1990; 64:4264–73.
crossref
12). Fu M. Codon usage bias in herpesvirus. Arch Virol. 2010; 155:391–6.
crossref
13). Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990; 87:23–9.
crossref
14). Wu G, Nie L, Zhang W. Predicted highly expressed genes in Nocardia farcinica and the implication for its primary metabolism and nocardial virulence. Antonie Van Leeuwenhoek. 2006; 89:135–46.
15). Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, et al. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol. 2003; 84:17–28.
crossref
16). Sharp PM, Li WH. The codon adaptation index –a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987; 15:1281–95.
17). Banerjee T, Gupta SK, Ghosh TC. Towards a resolution on the inherent methodological weakness of the “effective number of codons used by a gene”. Biochem Biophys Res Commun. 2005; 330:1015–8.
crossref
18). Roymondal U, Das S, Sahoo S. Predicting gene expression level from relative codon usage bias: An application to Escherichia coli genome. DNA Res. 2009; 16:13–30.
19). Waldman YY, Tuller T, Shlomi T, Sharan R, Ruppin E. Translation efficiency in human: tissue specificity, global optimization and differences between developmental stages. Nucleic Acids Res. 2010; 38:2964–74.
20). Goetz RM, Fuglsang A. Correlation of codon bias measures with mRNA levels: analysis of transcriptome data from Escherichia coli. Biochem Biophys Res Commun. 2005; 327:4–7.
21). Ohama T, Muto A, Osawa S. Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Res. 1990; 18:1565–9.
22). Lafay B, Atherton JC, Sharp PM. Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology. 2000; 146:851–60.
23). dos Reis M, Wernisch L, Savva R. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res. 2003; 31:6976–85.
24). Belalov IS, Lukashev AN. Causes and implications of codon usage bias in RNA viruses. PLoS ONE. 2013; 8:e56642.
crossref
25). Bulmer M. Coevolution of codon usage and transfer RNA abundance. Nature. 1987; 325:728–30.
crossref
26). Sharp PM, Stenico M, Peden JF, Lloyd AT. Codon usage: mutational bias, translational selection, or both? Biochem Soc Trans. 1993; 21:835–41.
crossref
27). Jia R, Cheng A, Wang M, Xin H, Guo Y, Zhu D, et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes. 2009; 38:96–103.
crossref
28). Jiang Y, Deng F, Wang H, Hu Z. An extensive analysis on the global codon usage pattern of baculoviruses. Arch Virol. 2008; 153:2273–82.
crossref
29). Hassan S, Mahalingam V, Kumar V. Synonymous codon usage analysis of thirty two mycobacteriophage genomes. Adv Bioinformatics. 2009; 316936.
crossref
30). Prabha R, Singh DP, Gupta SK, Farooqi S, Rai A. Synonymous codon usage in Thermosynechococcus elongatus (cyanobacteria) identifies the factors shaping codon usage variation. Bioinformation. 2012; 8:622–8.
31). Zhao S, Zhang Q, Chen Z, Zhao Y, Zhong J. The factors shaping synonymous codon usage in the genome of Burkholderia mallei. J Genet Genomics. 2007; 34:362–72.

Figure 1.
Codon usage bias index (CUI) values of HCMV genes. These graphs represent the distribution of CUI values of 3 groups. Each graph shows (A) CAI, (B) GC3s, (C) Nc, and (D) Nc/GC3s values. CORE genes are indicated by black circles, β-HERPES genes by white circles, and CMV genes by black triangles. Black bars indicate the standard error of the mean. Statistical significance of the difference in mean values was examined by student's t-test.
jbv-43-317f1.tif
Figure 2.
Nc versus GC3s plots for HCMV gene groups. (A) Scatter plot for all HCMV ORFs. (B) plot for CORE genes. (C) plot for β-HERPES genes. (D) plot for CMV genes. The continuous curve represents the expected Nc values by Wright's formula.
jbv-43-317f2.tif
Figure 3.
Genetic characteristics of HCMV genes. (A) Distribution of length of HCMV genes. (B) Genetic distance values of HCMV genes. (C) Relative amount of mRNA of HCMV genes. CORE genes are indicated by black circles, β-HERPES genes by white circles, and CMV genes by black triangles. Black bars indicate the standard error of the mean. Statistical significance of the difference in mean values was examined by student's t-test.
jbv-43-317f3.tif
Table 1.
HCMV strains used in this study
Strains Origin GenBank accession number Isolation date
AD169-UK USA NC_001347.6 1956
AD169-UC USA FJ527563.1 1956
TOWNE USA FJ616285.1 1970
HAN38 Germany GQ396662.1 2007
HAN20 Germany GQ396663.1 2007
HAN13 Germany GQ221973.1 2007
3157 United Kingdom GQ221974.1 2001
3301 United Kingdom GQ466044.1 2001
JP United Kingdom GQ221975.1 2001
TOLEDO USA GU937742.1 1984
MERLIN United Kingdom NC_006273.2 1999
U8 Italy GU179288 2003
VR1814 Italy GU179289 1996
U11 Italy GU179290 2003
AF1 Italy GU179291 2003
JHC South Korea HQ380895 2003
Table 2.
Grouping of HCMV genes according to evolutionary conservation
CORE (n = 42) β-HERPES (n = 27) CMV (n = 69)
UL44 UL45 UL46 UL23 UL24 RL1 RL6 RL10 RL11
UL47 UL48 UL48A UL25 UL27 RL12 RL13 UL2 UL4
UL49 UL50 UL51 UL29 UL31 UL5 UL6 UL7 UL8
UL52 UL53 UL54 UL32 UL33 UL9 UL10 UL11 UL13
UL55 UL56 UL57 UL35 UL36 UL14 UL15A UL16 UL17
UL69 UL70 UL71 UL38 UL43 UL18 UL19 UL20 UL21A
UL72 UL73 UL75 UL74 UL82 UL26 UL30 UL34 UL37
UL76 UL77 UL79 UL83 UL84 UL42 UL78 UL111A UL116
UL80 UL85 UL86 UL88 UL91 UL119 UL120 UL121 UL123
UL87 UL89 UL93 UL92 UL96 UL124 UL130 UL132 UL146
UL94 UL95 UL97 UL112 UL117 UL147 TR1 IRS1 US1
UL98 UL99 UL100 UL122 US22 US2 US3 US6 US7
UL102 UL103 UL104 US23 US26 US8 US9 US10 US11
UL105 UL114 UL115 US28 US12 US13 US14 US15
US16 US17 US18 US19
US20 US21 US24 US27
US29 US30 US31 US32
US34
TOOLS
Similar articles