Journal List > J Bacteriol Virol > v.43(3) > 1034082

Jang and Shin: Peptidylarginine Deiminase and Citrullination: Potential Therapeutic Targets for Inflammatory Diseases

Abstract

The multiple post-translational modifications of proteins display specific gain- or loss-of-function under normal and abnormal conditions. These modifications are precisely regulated by post-translational modification enzymes. The altered molecular status perturbs the pattern of gene expression and decides on a direction to signal transduction cascades as well as intrinsic properties of the proteins. Ultimately, it strictly maintains intracellular environment or results in disease manifestations. Recently, it has become that enzyme-dependent modification of arginine residue to citrulline exerts an important role in the induction of autoimmunity including rheumatoid arthritis, multiple sclerosis, and cancer. The modification of arginine residue to citrulline on proteins is called ‘citrullination’ or ‘deimination’ and is regulated by the calcium-dependent enzyme peptidylarginine deiminase (PAD). Now many effective PAD inhibitors (for example, Cl-amidine) have developed that ameliorates disease phenotypes. In this review, we discuss crucial roles of PAD enzyme and citrullination, the effectiveness of PAD inhibitors, and the implication in pathology.

REFERENCES

1). Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays. 2003; 25:1106–18.
crossref
2). Moscarello MA, Mastronardi FG, Wood DD. The Role of Citrullinated Proteins Suggests a Novel Mechanism in the Pathogenesis of Multiple Sclerosis. Neurochem Res. 2007; 32:251–6.
crossref
3). Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Méchin MC, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007; 56:3541–53.
crossref
4). Chang X, Zhao Y, Sun S, Zhang Y, Zhu Y. The expression of PADI4 in synovium of rheumatoid arthritis. Rheumatol Int. 2009; 29:1411–6.
crossref
5). Chang X, Han J, Pang L, Zhao Y, Yang Y, Shen Z. Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer. 2009; 9:40.
crossref
6). Fearon WR. The carbamido diacetyl reaction: a test for citrulline. Biochem J. 1939; 33:902–7.
crossref
7). Rogers GE, Taylor LD. The enzymic derivation of citrulline residues from arginine residues in situ during the biosynthesis of hair proteins that are cross-linked by isopeptide bonds. Adv Exp Med Biol. 1977; 86A:283–94.
crossref
8). Takahara H, Okamoto H, Sugawara K. Calcium-dependent properties of peptidylarginine deiminase from rabbit skeletal muscle. Agric Biol Chem. 1986; 50:2899–904.
crossref
9). Senshu T, Kan S, Ogawa H, Manabe M, Asaga H. Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem Biophys Res Commun. 1996; 225:712–9.
crossref
10). Nachat R, Méchin MC, Takahara H, Chavanas S, Charveron M, Serre G, et al. Peptidylarginine deiminase isoforms 1–3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol. 2005; 124:384–93.
crossref
11). Kizawa K, Takahara H, Troxler H, Kleinert P, Mochida U, Heizmann CW. Specific citrullination causes assembly of a globular S100A3 homotetramer: a putative Ca2+ modulator matures human hair cuticle. J Biol Chem. 2008; 283:5004–13.
12). Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M. Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol. 2004; 11:777–83.
crossref
13). Yao H, Li P, Venters BJ, Zheng S, Thompson PR, Pugh BF, et al. Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem. 2008; 283:20060–8.
crossref
14). Li P, Yao H, Zhang Z, Li M, Luo Y, Thompson PR, et al. Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol. 2008; 28:4745–58.
crossref
15). Li P, Wang D, Yao H, Doret P, Hao G, Shen Q, et al. Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene. 2010; 29:3153–62.
crossref
16). Guo Q, Fast W. Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. J Biol Chem. 2011; 286:17069–78.
crossref
17). Tanikawa C, Espinosa M, Suzuki A, Masuda K, Yamamoto K, Tsuchiya E, et al. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun. 2012; 3:676.
crossref
18). Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009; 184:205–13.
crossref
19). Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010; 207:1853–62.
crossref
20). Zhang X, Bolt M, Guertin MJ, Chen W, Zhang S, Cherrington BD, et al. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation. Proc Natl Acad Sci U S A. 2012; 109:13331–6.
crossref
21). Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol. 2003; 256:73–88.
crossref
22). Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development. 2008; 135:2627–36.
crossref
23). Jang B, Jin JK, Jeon YC, Cho HJ, Ishigami A, Choi KC, et al. Involvement of peptidylarginine deiminase-mediated posttranslational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease. Acta Neuropathol. 2010; 119:199–210.
crossref
24). Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, et al. Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's disease. J Neurosci Res. 2005; 80:120–8.
crossref
25). Klareskog L, Rönnelid J, Lundberg K, Padyukov L, Alfredsson L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu Rev Immunol. 2008; 26:651–75.
crossref
26). Méchin MC, Sebbag M, Arnaud J, Nachat R, Foulquier C, Adoue V, et al. Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci. 2007; 29:147–68.
crossref
27). Chumanevich AA, Causey CP, Knuckley BA, Jones JE, Poudyal D, Chumanevich AP, et al. Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am J Physiol Gastrointest Liver Physiol. 2011; 300:G929–38.
crossref
28). Slack JL, Causey CP, Thompson PR. Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell Mol Life Sci. 2011; 68:709–20.
crossref
29). Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012; 122:1791–802.
crossref
30). McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun. 1999; 67:3248–56.
31). Abdullah SN, Farmer EA, Spargo L, Logan R, Gully N. Porphyromonas gingivalis peptidylarginine deiminase substrate specificity. Anaerobe. 2013. doi: 10.1016/j.anaerobe.2013.07.001.
32). Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010; 62:2662–72.
33). Luo Y, Arita K, Bhatia M, Knuckley B, Lee YH, Stallcup MR, et al. Thompson PR. Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry. 2006; 45:11727–36.
34). Moscarello MA, Lei H, Mastronardi FG, Winer S, Tsui H, Li Z, et al. Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis. Dis Model Mech. 2013; 6:467–78.
crossref
35). Wang Y, Li P, Wang S, Hu J, Chen XA, Wu J, et al. Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J Biol Chem. 2012; 287:25941–53.
crossref
36). Willis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, et al. N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol. 2011; 186:4396–404.
crossref
37). Knight JS, Zhao W, Luo W, Subramanian V, O'Dell AA, Yalavarthi S, et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest. 2013; 123:2981–93.
crossref
38). Meuth SG, Göbel K, Wiendl H. Immune therapy of multiple sclerosis–future strategies. Immune therapy of multiple sclerosis–future strategies. Curr Pharm Des. 2012; 18:4489–97.
39). Arandjelovic S, McKenney KR, Leming SS, Mowen KA. ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor. J Immunol. 2012; 189:4112–22.
crossref
40). Lee HJ, Joo M, Abdolrasulnia R, Young DG, Choi I, Ware LB, et al. Peptidylarginine deiminase 2 suppresses inhibitory {kappa}B kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Biol Chem. 2010; 285:39655–62.
41). Yuk JM, Jo EK. Toll-like receptors and innate immunity. J Bacteriol Virol. 2011; 41:225–35.
crossref
42). Sokolove J, Zhao X, Chandra PE, Robinson WH. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 2011; 63:53–62.
crossref
43). Woo SY. Neutrophils in immunity. J Bacteriol Virol. 2012; 42:172–6.
crossref
44). Jang B, Jeon YC, Choi JK, Park M, Kim JI, Ishigami A, et al. Peptidylarginine deiminase modulates the physiological roles of enolase via citrullination: links between altered multifunction of enolase and neurodegenerative diseases. Biochem J. 2012; 445:183–92.
crossref
45). Hsu CY, Henry J, Raymond AA, Méchin MC, Pendaries V, Nassar D, et al. Deimination of human filaggrin-2 promotes its proteolysis by calpain 1. J Biol Chem. 2011; 286:23222–33.
crossref
46). Moelants EAV, Mortier A, Damme JV, Proost P, Loos T. Peptidylarginine deiminases: physiological function, interaction with chemokines and role in pathology. Drug Discovery Today: Technologies. 2012; 9:e261–80.
crossref

Figure 1.
Peptidylarginine deiminase (PAD) and citrullination. (A) The conversion of peptidylarginine to peptidylcitrulline is a posttranslational process driven by peptidylarginine deiminase (PAD) in a calcium (Ca2+) dependent manner. Ca2+ is an essential cofactor for the activation of PAD, effective Ca2+ concentration is approximately 100-fold higher than physiological cytosolic Ca2+ concentration. (B) Citrullination loss of target positive charge, alters protein structure and susceptibility of protease, changes natural functions, and become autoantigen. (C) Histone citrullination is involved in chromatin decondensation and formation of neutrophil extracellular traps. Citrullinated histones regulate gene transcription including p53- and estrogen receptor α-targeted. (D) PAD and citrullinated proteins are implicated in human diseases including cancer, rheumatoid arthritis, skin physiology, and neurodegeneration.
jbv-43-159f1.tif
Figure 2.
Structures of Cl- and F-amidine, 2-Chloroacetamidine, and YW3-56. Each PAD inhibitors irreversibly inactivates PAD enzymes via the specific modification of Cys645, an active site residue that is critical for catalysis.
jbv-43-159f2.tif
Table 1.
Peptidylarginine deiminase: protein expression and related diseases.
PAD type Expression: protein Disease Target
PAD1 Epidermis, anagen hair follicle, keratinocytes, arrector pili muscles, sweat glands Skin disorders Keratins
PAD2 Epidermis, keratinocytes, arrector pili muscles, sweat glands, lung bronchoalveolar lavages (BAL), lymphocytes, macrophages, monocytes, neutrophils, oligodendrocytes, Schwann cells Alzheimer's disease, Creutzfeldt-Jakob disease, multiple sclerosis, glaucoma, rheumatoid arthritis, Paget's disease Experimental autoimmune encephalomyelitis Histone H3, vimentin, enolase, myelin basic protein, glial fibrillary acidic protein, tubulin
PAD3 Epidermis, anagen hair follicle, hair cuticle, keratinocytes, neutrophils, Schwann cells Skin disorders Keratins, S100A3
PAD4 Lung BAL, bone marrow, CD34+ cells, granulocytes, HL-60, lymphocytes, macrophages, monocytes Apoptosis, cancer, multiple sclerosis, rheumatoid arthritis Histone H3/H4, OKL38
PAD6 Embryo, oocyte Rheumatoid arthritis Unknown
Table 2.
Potent PAD inhibitors and in vivo test
Inhibitor IC50 In vitro and Animal models Effects and Outcomes
Collagen-induced arthritis Reduced total synovial and serum citrullination
Low histological score and complement C3 deposition
Decreased IgG reactivity
Cl-amidine 5.9 ± 0.3 μM New Zealand mixed 2328 model of murine lupus Inhibition of NET formation
Reduced circulating autoantibodies and complement levels
Increased differentiation capacity of bone marrow endothelial progenitor cells
Improved endothelium-dependent vasorelaxation
Delayed time to arterial thrombosis
DSS-induced colitis Reduced the clinical signs and symptoms of colitis without toxic side effects
Apoptosis of inflammatory cells
F-amidine 21.6 ± 2.1 μM HL-60, MCF7, and HT-29 cancer cell lines Decreased cell viability
2-CA 14.4 mM ND4 mice model of multiple sclerosis Dramatic attenuation of disease phenotype at any stage
Reduced PAD activity and citrullination
Suppression of T cell autoreactivity, clearing brain and spinal cord infiltrates
Xenograft tumor model Cancer growth inhibition
YW3-56 1∼5 μM U2OS cell line Activation of tumor suppression genes
Inhibition of cancer cell growth
Regulation of mTORC1 activity through SESN2/DDIT induction
Regulation of autophagy flux by inhibiting autophagic vesicle breakdown by lysosomes

IC50 is the concentration of the inhibitor that yields half-maximal activity. IC50 values were determined by recombinant PAD enzymes in the presence of calcium and BAEE substrate (33∼35).

TOOLS
Similar articles