Abstract
Molecular epidemiology has been initiated for the confirmation of transmission link among tuberculosis patients. IS6110 restriction fragment length polymorphisms (RFLP) technique has been used as an excellent tool to discriminate Mycobacterium tuberculosis isolates, especially in tuberculosis (TB) outbreak in the population. IS6110 RFLP has the most discriminatory power for the M. tuberculosis isolates with high copy number of IS6110 like Korean isolates. Spoligotyping using spacers of direct repeat is useful to distinguish Beijing strains which are found widely in Eastern Asia, from non-Beijing strains. It is known that Beijing strains are more virulent, apt to be drug resistant than non-Beijing strains. Strain typing techniques of Mycobacterium tuberculosis has lead to the development of phylogenetic classification. Variable number tandem repeat (VNTR) of M. tuberculosis is another good target for strain typing. The technique using VNTR is rising as an alternative tool to overcome disadvantages of IS6110 RFLP which is time consuming in the sense that it takes longer time to process from the culture positive bacilli, and has the intrinsic difficulties in objectification of the results. The combination of many VNTR loci enhances discriminatory power to become equal to that of IS6110 RFLP. On the other hand, the optimal VNTR combination differs from one country to another due to different dominant clade. Large sequence polymorphisms (LSP) and single nucleotide polymorphisms (SNP) are important tools for the classification of the phylogeny of M. tuberculosis complex. Many previous reports indicate that the depending upon the type of strains, the ways of transmission of disease, the way to get infected with disease and the development of drug resistance conditions are variable. Therefore, the molecular epidemiology of M. tuberculosis has become more important for tuberculosis control in the world. It will be possible to set up tuberculosis-tailored policy after the characterization of M. tuberculosis by molecular epidemiologically.
REFERENCES
1). World Health Organization. Global Tuberculosis Control: Epidemiology, Strategy, Financing. WHO Report No. WHO/HTM/TB/2009.411. Geneva: World Health Organization;2009.
2). Frieden TR., Fujiwara PI., Washko RM., Hamburg MA. Tuberculosis in New York City-turning the tide. N Engl J Med. 1995. 333:229–33.
3). Thierry D., Cave MD., Eisenach KD., Crawford JT., Bates JH., Gicquel B, et al. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res. 1990. 18:188.
4). van Embden JD., Cave MD., Crawford JT., Dale JW., Eisenach KD., Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993. 31:406–9.
5). Huh YJ., Ahn DI., Kim SJ. Limited variation of DNA fingerprints (IS6110 and IS1081) in Korean strains of Mycobacterium tuberculosis. Tuber Lung Dis. 1995. 76:324–9.
6). Park YK., Bai GH., Kim SJ. Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from countries in the western pacific region. J Clin Microbiol. 2000. 38:191–7.
7). Pena MJ., Caminero JA., Campos-Herrero MI., Rodríguez-Gallego JC., García-Laorden MI., Cabrera P, et al. Epidemiology of tuberculosis on Gran Canaria: a 4 year population study using traditional and molecular approaches. Thorax. 2003. 58:618–22.
8). Yeo IK., Tannenbaum T., Scott AN., Kozak R., Behr MA., Thibert L, et al. Contact investigation and genotyping to identify tuberculosis transmission to children. Pediatr Infect Dis J. 2006. 25:1037–43.
9). Park YK., Kang HY., Lim JG., Ha JS., Cho JO., Choi HS, et al. Analysis of DNA fingerprints of Mycobacterium tuberculosis isolates from patients registered at Health Center in Gyeonggi Province in 2004. Tuberc Respir Dis. 2006. 60:290–6.
10). Small PM., Hopewell PC., Singh SP., Paz A., Parsonnet J., Ruston DC, et al. The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med. 1994. 330:1703–9.
11). Filia A., Ciarrocchi G., Belfiglio R., Caferri M., Bella A., Piersimoni C, et al. Tuberculosis in kindergarten and primary school, Italy, 2008-2009. Emerg Infect Dis. 2011. 17:514–6.
12). Small PM., Shafer RW., Hopewell PC., Singh SP., Murphy MJ., Desmond E, et al. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med. 1993. 328:1137–44.
13). Cole ST., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998. 393:537–44.
14). Iwamoto T., Yoshida S., Suzuki K., Tomita M., Fujiyama R., Tanaka N, et al. Hypervariable loci that enhance the discriminatory ability of newly proposed 15-loci and 24-loci variable-number tandem repeat typing method on Mycobacterium tuberculosis strains predominated by the Beijing family. FEMS Microbiol Lett. 2007. 270:67–74.
15). Okada M., Kobayashi K. Recent progress in mycobacteriology. Kekkaku. 2007. 82:783–99.
16). Maeda S., Murase Y., Mitarai S., Sugawara I., Kato S. Rapid, simple genotyping method by the variable numbers of tandem repeats (VNTR) for Mycobacterium tuberculosis isolates in Japan-analytical procedure of JATA (12)-VNTR. Kekkaku. 2008. 83:673–8.
17). Supply P., Allix C., Lesjean S., Cardoso-Oelemann M., Rüsch-Gerdes S., Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol. 2006. 44:4498–510.
18). Kang HY., Ryoo SW., Park YK. Evaluation of the selected 12-locus MIRU for genotyping Beijing family Mycobacterium tuberculosis in Korea. Tuberc Respir Dis. 2009. 67:499–505.
19). Yun KW., Song EJ., Choi GE., Hwang IK., Lee EY., Chang CL. Strain typing of Mycobacterium tuberculosis isolates from Korea by mycobacterial interspersed repetitive units-variable number of tandem repeats. Korean J Lab Med. 2009. 29:314–9.
20). Shamputa IC., Lee J., Allix-Béguec C., Cho EJ., Lee JI., Rajan V, et al. Genetic diversity of Mycobacterium tuberculosis isolates from a tertiary care tuberculosis hospital in South Korea. J Clin Microbiol. 2010. 48:387–94.
21). Tsolaki AG., Hirsh AE., DeRiemer K., Enciso JA., Wong MZ., Hannan M, et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A. 2004. 101:4865–70.
22). Plikaytis BB., Marden JL., Crawford JT., Woodley CL., Butler WR., Shinnick TM. Multiplex PCR assay specific for the multidrug-resistant strain W of Mycobacterium tuberculosis. J Clin Microbiol. 1994. 32:1542–6.
23). Tsolaki AG., Gagneux S., Pym AS., Goguet de la Salmoniere YO., Kreiswirth BN., Van Soolingen D, et al. Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol. 2005. 43:3185–91.
24). Gagneux S., Deriemer K., Van T., Kato-Maeda M., de Jong BC., Narayanan S, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006. 103:2869–73.
25). Wada T., Iwamoto T., Maeda S. Genetic diversity of the Mycobacterium tuberculosis Beijing family in East Asia revealed through refined population structure analysis. FEMS Microbiol Lett. 2009. 291:35–43.
26). Kang HY., Wada T., Iwamoto T., Maeda S., Murase Y., Kato S, et al. Phylogeographical particularity of the Mycobacterium tuberculosis Beijing family in South Korea based on international comparison with surrounding countries. J Med Microbiol. 2010. 59:1191–7.
27). Filliol I., Motiwala AS., Cavatore M., Qi W., Hazbón MH., Bobadilla del Valle M, et al. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol. 2006. 188:759–72.
28). Abadia E., Zhang J., dos Vultos T., Ritacco V., Kremer K., Aktas E, et al. Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method. Infect Genet Evol. 2010. 10:1066–74.
29). Alonso M., Navarro Y., Barletta F., Martínez Lirola M., Gotuzzo E., Bouza E, et al. A novel method for the rapid and prospective identification of Beijing Mycobacterium tuberculosis strains by high-resolution melting analysis. Clin Microbiol Infect. 2011. 17:349–57.
30). van Soolingen D., Qian L., de Haas PE., Douglas JT., Traore H., Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol. 1995. 33:3234–8.
31). Bifani PJ., Mathema B., Kurepina NE., Kreiswirth BN. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol. 2002. 10:45–52.
32). Park YK., Shin S., Ryu S., Cho SN., Koh WJ., Kwon OJ, et al. Comparison of drug resistance genotypes between Beijing and non-Beijing family strains of Mycobacterium tuberculosis in Korea. J Microbiol Methods. 2005. 63:165–72.
33). Hanekom M., van der Spuy GD., Streicher E., Ndabambi SL., McEvoy CR., Kidd M, et al. A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. J Clin Microbiol. 2007. 45:1483–90.
34). Dye C., Williams BG., Espinal MA., Raviglione MC. Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis. Science. 2002. 295:2042–6.
35). Centers for Disease Control and Prevention (CDC). Two simultaneous outbreaks of multidrug-resistant tuberculosis–Federated States of Micronesia, 2007-2009. MMWR Morb Mortal Wkly Rep. 2009. 58:253–6.
36). Crampin AC., Mwaungulu JN., Mwaungulu FD., Mwafulirwa DT., Munthali K., Floyd S, et al. Recurrent TB: relapse or reinfection? The effect of HIV in a general population cohort in Malawi. AIDS. 2010. 24:417–26.
37). de Jong BC., Hill PC., Brookes RH., Gagneux S., Jeffries DJ., Otu JK, et al. Mycobacterium africanum elicits an attenuated T Cell response to early secreted antigenic target, 6 kDa, in patients with tuberculosis and their household contacts. J Infect Dis. 2006. 193:1279–86.