Journal List > J Bacteriol Virol > v.41(2) > 1034021

Na and Nam: Infectobesity: a New Area for Microbiological and Virological Research

Abstract

Obesity is connected with numerous diseases, such as type 2 diabetes, atherosclerosis, cancer, and nervous system dysfunctions. Obesity is affected by genetic, environmental, and cultural factors. However, numerous studies indicate that several pathogens might cause obesity. This review discusses recent data and the characteristics of pathogens that are implicated in obesity. In particular, human adenovirus 36 (Ad36) is the most clearly implicated virus in human obesity. It was recently shown that obese groups from the USA, Korea, and Italy have a higher prevalence of serum antibodies against Ad36. The mechanisms of Ad36-induced obesity remain unclear. However, glucose uptake and inflammation are possible mechanisms of Ad36-induced obesity. Overall, this new understanding of causes of obesity has developed into the concept of ‘infectobesity’ and the possibility of developing a ‘vaccine’ or ‘therapeutic agents’ for obesity.

REFERENCES

1). Kim DM., Ahn CW., Nam SY. Prevalence of obesity in Korea. Obes Rev. 2005. 6:117–21.
crossref
2). Ogden CL., Carroll MD., Curtin LR., McDowell MA., Tabak CJ., Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006. 295:1549–55.
crossref
3). Jeong BG., Moon OR., Kim NS., Kang JH., Yoon TH., Lee SJ, et al. Socioeconimic costs of obesity for Korean adults. Korean J Prev Med. 2002. 35:1–12.
4). Butte NF., Christiansen E., Sorensen TI. Energy imbalance underlying the development of childhood obesity. Obesity. 2007. 15:3056–66.
5). Hebebrand J., Hinney A. Environmental and genetic risk factors in obesity. Child Adolesc Psychiatr Clin N Am. 2009. 18:83–94.
crossref
6). van Ginneken V., Sitnyakowsky L., Jeffery JE. Infectobesity: viral infections (especially with human adenovirus-36: Ad-36) may be a cause of obesity. Med Hypotheses. 2009. 72:383–8.
crossref
7). Pasarica M., Dhurandhar NV. Infectobesity: obesity of infectious origin. Adv Food Nutr Res. 2007. 52:61–102.
crossref
8). Dhurandhar NV. Infectobesity: obesity of infectious origin. J Nutr. 2001. 131:2794S–7S.
crossref
9). Dhurandhar NV. Atkinson RL. Obesity of infectious origin-A Review. GGH. 2004. 20:33–9.
10). Greenway F. Virus-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2006. 290:R188–9.
crossref
11). Atkinson RL. Viruses as an etiology of obesity. Mayo Clin Proc. 2007. 82:1192–8.
12). Detwiler LA. Scrapie. Rev Sci Tech. 1992. 11:491–537.
crossref
13). Kim YS., Carp RI., Callahan SM., Wisniewski HM. Scrapie-induced obesity in mice. J Infect Dis. 1987. 156:402–5.
crossref
14). Kim YS., Carp RI., Callahan SM., Wisniewski HM. Adrenal involvement in scrapie-induced obesity. Proc Soc Exp Biol Med. 1988. 189:21–7.
crossref
15). Carp RI., Kim YS., Callahan SM. Scrapie-induced alterations in glucose tolerance in mice. J Gen Virol. 1989. 70:827–35.
crossref
16). Kuo CC., Jackson LA., Campbell LA., Grayston JT. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev. 1995. 8:451–61.
17). Rantala A., Lajunen T., Juvonen R., Bloigu A., Paldanius M., Silvennoinen-Kassinen S, et al. Chlamydia pneumoniae infection is associated with elevated body mass index in young men. Epidemiol Infect. 2010. 138:1267–73.
18). Koziolek M., Krzyzanowska-Swiniarska B., Maczyńska I., Miazgowski T., Giedrys-Kalemba S. The association between past Chlamydia pneumoniae infection and markers of chronic inflammation in obese women. Eur J Clin Microbiol Infect Dis. 2008. 27:415–21.
19). Björkstén B., Sepp E., Julge K., Voor T., Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001. 108:516–20.
crossref
20). Guarner F., Malagelada JR. Gut flora in health and disease. Lancet. 2003. 361:512–9.
crossref
21). DiBaise JK., Zhang H., Crowell MD., Krajmalnik-Brown R., Decker GA., Rittmann BE. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc. 2008. 83:460–9.
crossref
22). Sanz Y., Santacruz A., Gauffin P. Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc. 2010. 69:434–41.
crossref
23). Turnbaugh PJ., Ley RE., Mahowald MA., Magrini V., Mardis ER., Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006. 444:1027–31.
crossref
24). Ley RE., Turnbaugh PJ., Klein S., Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006. 444:1022–3.
25). Abu-Shanab A., Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010. 7:691–701.
crossref
26). McCarthy AJ., Shaw MA., Goodman SJ. Pathogen evolution and disease emergence in carnivores. Proc Biol Sci. 2007. 274:3165–74.
crossref
27). Bernard A., Cohen R., Khuth ST., Vedrine B., Verlaeten O., Akaoka H, et al. Alteration of the leptin network in late morbid obesity induced in mice by brain infection with canine distemper virus. J Virol. 1999. 73:7317–27.
crossref
28). Münzel P., Koschel K. Alteration in phospholipid methylation and impairment of signal transmission in persistently paramyxovirus-infected C6 rat glioma cells. Proc Natl Acad Sci U S A. 1982. 79:3692–6.
29). Nagashima K., Zabriskie JB., Lyons MJ. Virus-induced obesity in mice: association with a hypothalamic lesion. J Neuropathol Exp Neurol. 1992. 51:101–9.
crossref
30). Carter JK., Smith RE. Specificity of avian leukosis virus-induced hyperlipidemia. J Virol. 1984. 50:301–8.
crossref
31). Carter JK., Ow CL., Smith RE. Rous-associated virus type 7 induces a syndrome in chickens characterized by stunting and obesity. Infect Immun. 1983. 39:410–22.
crossref
32). Dhurandhar NV., Kulkarni PR., Ajinkya SM., Sherikar AA., Atkinson RL. Association of adenovirus infection with human obesity. Obes Res. 1997. 5:464–9.
crossref
33). Stitz L., Dietzschold B., Carbone KM. Immunopathogenesis of Borna disease. Curr Top Microbiol Immunol. 1995. 190:75–92.
crossref
34). Dauphin G., Legay V., Pitel PH., Zientara S. Borna disease: current knowledge and virus detection in France. Vet Res. 2002. 33:127–38.
crossref
35). Gosztonyi G., Ludwig H. Borna disease–neuropathology and pathogenesis. Curr Top Microbiol Immunol. 1995. 190:39–73.
crossref
36). Herden C., Herzog S., Richt JA., Nesseler A., Christ M., Failing K, et al. Distribution of Borna disease virus in the brain of rats infected with an obesity-inducing virus strain. Brain Pathol. 2000. 10:39–48.
crossref
37). Hirano N., Kao M., Ludwig H. Persistent, tolerant or subacute infection in Borna disease virus-infected rats. J Gen Virol. 1983. 64(Pt 7):1521–30.
crossref
38). Wigand R., Gelderblom H., Wadell G. New human adenovirus (candidate adenovirus 36), a novel member of subgroup D. Arch Virol. 1980. 64:225–33.
crossref
39). Harrison SC. Virology. Looking inside adenovirus. Science. 2010. 329:1026–7.
40). Dhurandhar NV., Israel BA., Kolesar JM., Mayhew G., Cook ME., Atkinson RL. Transmissibility of adenovirus-induced adiposity in a chicken model. Int J Obes Relat Metab Disord. 2001. 25:990–6.
crossref
41). Krishnapuram R., Kirk-Ballard H., Zuberi A., Dhurandhar NV. Infectivity period of mice inoculated with human adenoviruses. Lab Anim. 2011. 45:103–8.
crossref
42). Dhurandhar NV., Whigham LD., Abbott DH., Schultz-Darken NJ., Israel BA., Bradley SM, et al. Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr. 2002. 132:3155–60.
crossref
43). Atkinson RL., Dhurandhar NV., Allison DB., Bowen RL., Israel BA., Albu JB, et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes. 2005. 29:281–6.
crossref
44). Vangipuram SD., Yu M., Tian J., Stanhope KL., Pasarica M., Havel PJ, et al. Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes. 2007. 31:87–96.
crossref
45). Whigham LD., Israel BA., Atkinson RL. Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals. Am J Physiol Regul Integr Comp Physiol. 2006. 290:R190–4.
46). Vasilakopoulou A., le Roux CW. Could a virus contribute to weight gain? Int J Obes. 2007. 31:1350–6.
crossref
47). Yao MZ., Gu JF., Wang JH., Sun LY., Liu H., Liu XY. Adenovirus-mediated interleukin-2 gene therapy of nociception. Gene Ther. 2003. 10:1392–9.
crossref
48). So PW., Herlihy AH., Bell JD. Adiposity induced by adenovirus 5 inoculation. Int J Obes. 2005. 29:603–6.
crossref
49). Arnold J., Janoska M., Kajon AE., Metzgar D., Hudson NR., Torres S, et al. Genomic characterization of human adenovirus 36, a putative obesity agent. Virus Res. 2010. 149:152–61.
crossref
50). Goossens VJ., deJager SA., Grauls GE., Gielen M., Vlietinck RF., Derom CA, et al. Lack of evidence for the role of human adenovirus-36 in obesity in a European cohort. Obesity. 2011. 19:220–1.
crossref
51). Broderick MP., Hansen CJ., Irvine M., Metzgar D., Campbell K., Baker C, et al. Adenovirus 36 seropositivity is strongly associated with race and gender, but not obesity, among US military personnel. Int J Obes. 2010. 34:302–8.
crossref
52). Dhurandhar NV., Israel BA., Kolesar JM., Mayhew GF., Cook ME., Atkinson RL. Increased adiposity in animals due to a human virus. Int J Obes Relat Metab Disord. 2000. 24:989–96.
crossref
53). Pasarica M., Shin AC., Yu M., Ou Yang HM., Rathod M., Jen KL, et al. Human adenovirus 36 induces adiposity, increases insulin sensitivity, and alters hypothalamic monoamines in rats. Obesity. 2006. 14:1905–13.
crossref
54). Gabbert C., Donohue M., Arnold J., Schwimmer JB. Adenovirus 36 and obesity in children and adolescents. Pediatrics. 2010. 126:721–6.
crossref
55). Trovato GM., Martines GF., Garozzo A., Tonzuso A., Timpanaro R., Pirri C, et al. Ad36 adipogenic adeno-virus in human non-alcoholic fatty liver disease. Liver Int. 2010. 30:184–90.
crossref
56). Na HN., Hong YM., Kim J., Kim HK., Jo I., Nam JH. Association between human adenovirus-36 and lipid disorders in Korean schoolchildren. Int J Obes. 2010. 34:89–93.
crossref
57). Atkinson RL., Lee I., Shin HJ., He J. Human adenovirus-36 antibody status is associated with obesity in children. Int J Pediatr Obes. 2010. 5:157–60.
crossref
58). Rogers PM., Fusinski KA., Rathod MA., Loiler SA., Pasarica M., Shaw MK, et al. Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. Int J Obes. 2008. 32:397–406.
crossref
59). Pasarica M., Mashtalir N., McAllister EJ., Kilroy GE., Koska J., Permana P, et al. Adipogenic human adeno-virus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells. Stem Cells. 2008. 26:969–78.
crossref
60). Wang ZQ., Cefalu WT., Zhang XH., Yu Y., Qin J., Son L, et al. Human adenovirus type 36 enhances glucose uptake in diabetic and nondiabetic human skeletal muscle cells independent of insulin signaling. Diabetes. 2008. 57:1805–13.
crossref
61). Laybutt DR., Thompson AL., Cooney GJ., Kraegen EW. Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in rat cardiac muscle in vivo. Am J Physiol. 1997. 273:H1309–16.
62). Bertacca A., Ciccarone A., Cecchetti P., Vianello B., Laurenza I., Maffei M, et al. Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts. Metabolism. 2005. 54:1687–93.
crossref
63). Catalán V., Gómez-Ambrosi J., Ramirez B., Rotellar F., Pastor C., Silva C, et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg. 2007. 17:1464–74.
crossref
64). Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010. 17:332–41.
crossref
65). Rizvi AA. Cytokine biomarkers, endothelial inflammation, and atherosclerosis in the metabolic syndrome: emerging concepts. Am J Med Sci. 2009. 338:310–8.
crossref
66). Suga H., Eto H., Aoi N., Kato H., Araki J., Doi K, et al. Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg. 2010. 126:1911–23.
crossref
67). Zivkovic AM., German JB., Sanyal AJ. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr. 2007. 86:285–300.
crossref
68). Nieto-Vazquez I., Fernández-Veledo S., Krämer DK., Vila-Bedmar R., Garcia-Guerra L., Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008. 114:183–94.
crossref

Figure 1.
Increasing ratios of obese population are appeared all over the world as Europe, Asia, and USA. (A) Global obesity percentage. Obesity prevalence in the USA (B) and Korea (C). (1, 2)
jbv-41-65f1.tif
Figure 2.
Effects of gut microbiota (25). Infection with gut microbiota increases body weight and free fatty acid in serum. It induces insulin resistance and reduces hepatic VLDL secretion. Therefore gut microbiota effects fatty liver production.
jbv-41-65f2.tif
Figure 3.
Structure of human adenovirus 36 (38). Human adenovirus 36 is nonenveloped isosahedral structure and medium size (90~100 nm). Purified virion fraction is symmetry (rotational axes) and the architecture of the hexon-penton-relation becomes apparent.
jbv-41-65f3.tif
Figure 4.
The structure of Ad36 (49). The genome length of Ad36 is 35,152 bp with the GC content at 57.2%. The organization of the 39 open reading frames (ORFs) was similar to that of other adenoviruses.
jbv-41-65f4.tif
Figure 5.
Inflammation state in obesity (63). When adipocytes undergo hypertrophy, releasing chemokines that induce recruitment M1-polarized macrophages increased MCP-1 and IL-6.
jbv-41-65f5.tif
Table 1.
Pathogens correlated with obesity (Reference 6~11)
  Year first reported Animal model Effect on Body weight Effect on biochemical parameters Association with human obesity
Scrapie 1968 Mice ↑Body weight due to fat accumulation Brain function alteration Not reported
Chlamydia pneumoniae 2000 Human ↑Significantly higher BMI Association with coronary heart disease Partially yes
Gut microbiota 2004 Mice ↑whole body fat 57% ↑epidemal fat 69% Increased insulin resistance and glucose Yes
CDV 1982 Mice ↑number and size of fat cell Alters hypothalamic integrity Not reported
RAV-7 1983 Embryos-chicken line ↑obesity ↑hyperlipidemia Hepatomegaly, anemia and immune suppression No
SMAM-1 1990 Chicken ↑excessive visceral fat Enlarged liver, kidney, hepatic fatty infiltration and congestion Partially yes
BDV 1991 Rats ↑serum glucose ↑triglyceride Inflammation lesions and viral replication in hypothalamus Not reported
Ad-37 2002 Chicken ↑obesity Differentiated 3T3-L1 No
Ad-5 2002 Mice ↑Obesity Important role of predispositioin to obesity Not reported
Ad-36 2000 Chicken, Mice, Rhesus and marmoset monkeys, Rats ↑body weight ↑visceral fat ↑epidermal fat ↑inguinal fat E4 orf-1 Increase adipose tissue, low levels of serum cholesterol and TG Strongly yes Epidemiological data
Table 2.
Subgroups of human adenoviruses (Reference 39)
Subgroup (species) Hemagglutination groups Serotypes Percentage of GC in DNA Disease
A IV (little or no agglutination) 12, 18, 31 48~49 Meningoencephalitis
B I (complete agglutination of monkey erythrocytes) 3, 7, 11, 14, 16, 21, 34, 35, 50 50~52 Acute respiratory disease
C III (partial agglutination of rat erythrocytes) 1, 2, 5, 6 57~59 Acute febrile pharyngitis
D II (complete agglutination of rat erythrocytes) 8, 9, 10, 13, 15, 17, 19, 20, 22~30, 32, 33, 36~39, 42~49, 51 57~61 Epidemic Keratoconjunctivitis
E III 4 57~59 Pneumonia
F III 40, 41 50~52 Gastoenteritis
G 52 55 Gastoenteritis
Table 3.
Homology of amino acid sequences with Ad36 (Reference 49)
  Ad8 Ad9 Ad19 Ad22 Ad28 Ad37 Ad49 Ad53
Pentonbase 91.4 92.1 93.3 92.3 92.3 90.6 91.7 90.6
Hexon 91 90.5 90.1 91 90.5 90.7 91.8 91
CR1β 46.5 48.6 48.3 46 51 45.8 85 47.1
CR1γ 69.9 64.3 87 69 61 70.1 66.9 69.6
Fiber 69 64.3 62.4 68.7 65 62.4 66 63.5
ORF4 90.8 91.7 89.2 91 83.5 90 91.7 91.7
ORF3 88.9 88 88 86 87.2 88 88 88.9
ORF2 86.2 86.9 86.9 86 93.8 86.9 87.7 86.2
ORF1 84 92 47.2a 91.2 91.2 47.2a 91.2 84.8

a Shorter proteins due to frameshift

Table 4.
Prevalence of Ad36 in human populations
Children (%)   Obese Overweight
  Korean cohort 1 (57) 30a (25/84)  
  Korean cohort 2 (56) 29 (74/259)  
  US cohort 1 (54) 22 (15/67)  
Adults (%)      
  Korean cohort 3 (in press IJO) 30 (54/180) 40 (72/180)
  US cohort 2 (43) 30 (108/252)  
  US cohort 3 (51) 34 (68/104)  
  Europe cohort 1 (55) 65 (51/150)  
  Europe cohort 2 (50) 6 (28/509)  

a percentage (positive / total number)

TOOLS
Similar articles