Journal List > J Bacteriol Virol > v.40(2) > 1033983

Park, Lee, Kim, Joo, Kwon, Youn, Song, Kang, Lee, Baik, Lee, Cho, and Rhee: Analysis of Low Molecular Weight Proteome from H. pylori Cell Extract Using the High Performance Liquid Chromatography

Abstract

Low molecular proteins (LMPs) which are smaller than 20 kDa are difficult to visible on a standard two-dimensional SDS-polyacrylamide gel electrophoresis (2-D SDS-PAGE) map. LMPs must be enriched appropriately to be analyzed. We isolated LMPs of Helicobacter pylori 26695 from 1-D polyacrylamide gel and digested by pepsin. Pepsin-digested LMPs were separated by HPLC and each fraction was analyzed by hybrid tandem mass spectrometer. Seventy nine peptides, representing 27 genes, including copper ion binding protein (CopP, 7 kDa), thioredoxin (TrxA, 11.9 kDa) and ribosomal protein L23 (Rpl23, 10.5 kDa) were identified. Some proteins larger than 40 kDa including Omp2, Omp21, Omp27, Omp30, Omp32, catalase and HP1083 were also identified. This work may give researchers a useful way to analyse the expressed LMPs which could not be identified on the conventional 2-D SDS-PAGE.

REFERENCES

1). Marshall BJ., Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984. 16:1311–5.
crossref
2). Rhee KH., Cho MJ., Kim JB., Choi SK., Park CK., Kim YC, et al. A prospective study on the Campylobacter pylori isolated from patients of gastroduodenal inflammatory conditions. J Kor Soc Microbiol. 1988. 23:9–16.
3). Rhee KH. Campylobacter and Helicobacter. Ko GG, editor. Recent clinical microbiology. 3rd. Seoul: Seoheung Publishing Company;1992. .p.p. 283–90.
4). Blaser MJ. Helicobacter pylori; its role in disease. Clin Infect Dis. 1992. 15:386–91.
5). Langenberg ML., Tytgat GNJ., Schipper MEI., Rietra PJG., Zanen HC., Burnett RA, et al. Campylobacter-like organisms in the stomach of patients and healthy individuals. Lancet. 1984. 323:1348–9.
6). Rauws EA., Langenberg W., Houthoff HJ., Zanen HC., Tytgat GN. Campylobacter pyloridis-associated chronic active antral gastritis. A prospective study of its prevalence and the effects of antibacterial and antiulcer treatment. Gastroenterology. 1988. 94:33–40.
7). Price AB., Levi J., Dolby JM., Dunscombe PL., Smith A., Clark J, et al. Campylobacter pyloridis in peptic ulcer disease: microbiology, pathology, and scanning electron microscopy. Gut. 1985. 26:1183–8.
8). Peterson W. Helicobacter pylori and peptic ulcer disease. N Engl J Med. 1991. 324:1043–8.
9). World Health Organization. Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum. 1994. 61:177–240.
10). Petersen AM., Krogfelt KA. Helicobacter pylori: an invading microorganism? A review. FEMS Immunol Med Microbiol. 2003. 36:117–26.
11). Baik SC., Kim JB., Cho MJ., Kim YC., Park CK., Ryou HH, et al. Prevalence of Helicobacter pylori infection among normal Korean adults. J Kor Soc Microbiol. 1990. 25:455–62.
12). Rhee KH., Youn HS., Baik SC., Lee WK., Cho MJ., Choi HJ, et al. Prevalence of Helicobacter pylori infection in Korea. J Kor Soc Microbiol. 1990. 25:475–90.
13). Youn HS., Baik SC., Lee WK., Cho MJ., Ryou HH., Choi HJ, et al. Serodiagnosis of Helicobacter pylori infection. J Kor Soc Microbiol. 1990. 25:463–74.
14). Alm RA., Ling LS., Moir DT., King BL., Brown ED., Doig PC, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999. 397:176–80.
15). Tomb JF., White O., Kerlavage AR., Clayton RA., Sutton GG., Fleischmann RD, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997. 388:539–47.
16). Oh JD., Kling-Bäckhed H., Giannakis M., Xu J., Fulton RS., Fulton LA, et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci USA. 2006. 103:9999–10004.
17). Cho MJ., Jeon BS., Park JW., Jung TS., Song JY., Lee WK, et al. Identifying the major proteome components of Helicobacter pylori strain 26695. Electrophoresis. 2002. 23:1161–73.
18). Jungblut PR., Bumann D., Haas G., Zimny-Arndt U., Holland P., Lamer S, et al. Comparative proteome analysis of Helicobacter pylori. Mol Microbiol. 2000. 36:710–25.
19). Baik SC., Kim KM., Song SM., Kim DS., Jun JS., Lee SG, et al. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol. 2004. 186:949–55.
20). Bumann D., Aksu S., Wendland M., Janek K., Zimny-Arndt U., Sabarth N, et al. Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun. 2002. 70:3396–403.
21). Jungblut PR., Bumann D. Immunoproteome of Helicobacter pylori. Methods Enzymol. 2002. 358:307–16.
22). Cash P. Proteomics in medical microbiology. Electrophoresis. 2000. 21:1187–201.
crossref
23). O'Connell KL., Stults JT. Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis. 1997. 18:349–59.
24). Lee HW., Choe YH., Kim DK., Jung SY., Lee NG. Proteomic analysis of a ferric uptake regulator mutant of Helicobacter pylori: regulation of Helicobacter pylori gene expression by ferric uptake regulator and iron. Proteomics. 2004. 4:2014–27.
25). Lock RA., Cordwell SJ., Coombs GW., Walsh BJ., Forbes GM. Proteome analysis of Helicobacter pylori: major proteins of type strain NCTC 11637. Pathology. 2001. 33:365–74.
26). McAtee CP., Hoffman PS., Berg DE. Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques. Proteomics. 2001. 1:516–21.
27). Hood BL., Lucas DA., Kim G., Chan KC., Blonder J., Issaq HJ, et al. Quantitative analysis of the low molecular weight serum proteome using 18O stable isotope labeling in a lung tumor xenograft mouse model. J Am Soc Mass Spectrom. 2005. 16:1221–30.
28). Wang G., Alamuri P., Maier RJ. The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol. 2006. 61:847–60.
29). Cooksley C., Jenks PJ., Green A., Cockayne A., Logan RP., Hardie KR. NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J Med Microbiol. 2003. 52:461–9.
30). Yang HB., Sheu BS., Wang JT., Lin ST., Wu JJ. Serological responses of FldA and small-molecular-weight proteins of Helicobacter pylori: correlation with the presence of the gastric MALT tissue. Helicobacter. 2004. 9:81–6.
31). Harper RG., Workman SR., Schuetzner S., Timperman AT., Sutton JN. Low-molecular-weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry. Electrophoresis. 2004. 25:1299–306.
crossref
32). Keller BO., Wang Z., Li L. Low-mass proteome analysis based on liquid chromatography fractionation, nanoliter protein concentration/digestion, and microspot matrix-assisted laser desorption ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002. 782:317–29.
crossref
33). Dunlop KY., Li L. Automated mass analysis of low-molecularmass bacterial proteome by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 2001. 925:123–32.
crossref
34). Lollo BA., Harvey S., Liao J., Stevens AC., Wagenknecht R., Sayen R, et al. Improved two-dimensional gel electrophoresis representation of serum proteins by using Protoclear™. Electrophoresis. 1999. 20:854–9.
crossref
35). Kang HL., Baik SC. Application of hemin-agarose affinity chromatography to enrich proteome components of Helicobacter pylori strain 26695. J Bacteriol Virol. 2005. 35:77–85.

Figure 1.
Extraction of the H. pylori LMW proteins. In lanes: M, molecular weight marker; 1, whole cell proteins of H. pylori 26695; 2, extracted low molecular proteins.
jbv-40-67f1.tif
Figure 2.
Profile of the H. pylori low molecular proteins separated by reverse phased HPLC.
jbv-40-67f2.tif
Figure 3.
2-DE map of the low molecular proteins of H. pylori that were extracted from 1-DE gel.
jbv-40-67f3.tif
Table 1.
Protein identification from reverse phased HPLC fractions of H. pylori 26695 low molecular proteins using the hybrid tandem mass spectrometry
Fraction No.§ MW (kDa) Protein name Match seq. TIGR locus name
23~24 22.2 Alkyl hydroperoxide reductase (ahpC) 34-NGAILFFWPK-43 HP1563
29~30 11.9 Thioredoxin (trxA) 55-VNTDEQEELSAK-67 HP0824
34~35 17.5 flavodoxin (fldA) 40-EQFNSFTK-47 HP1161
34~35 17.5 flavodoxin (fldA) 112-VVGQTPTDGYHFEASK-127 HP1161
34~35 17.5 flavodoxin (fldA) 25-AIGNAEVVDVAK-36 HP1161
34~35 16.9 Neutrophil activating protein (napA) 120-VTVTYADDQLAK-131 HP0243
34~35 19.1 Membrane-associated lipoprotein 69-AEDLITNNDVDYSTNQATAK-88 HP1456
36~37 27.8 Hypothetical protein HP0369 9-IQMTFYKL-16 HP0369
36~37 13.0 Co-chaperone (groES) 21-TSSGIIIPDNAK-32 HP0011
38~39 16.9 Neutrophil activating protein (napA) 30-GTDFFNVHK-38 HP0243
38~39 10.5 Ribosomal protein L23 (rpl23) 23-GVLVVQTAQNVTK-35 HP1317
38~39 14.5 Ribosomal protein S9 (rps9) 64-AVVFGGGYSAQAEALR-79 HP0083
38~39 20.4 Hypothetical protein (HP0305) 104-NVIEGDHAGSLTAYVR-119 HP0305
38~39 17.6 Hypothetical protein (HP0721) 34-MAGI(V)VAPQDIVDYTK-48 HP0721
40~41 16.9 Neutrophil activating protein (napA) 94-EILEDYKYLEK-104 HP0243
40~41 18.3 Adhesin thiol peroxidase (tagD) 28-LVNGDLQEVNLLK-41 HP0390
40~41 13.3 Ribosomal protein L7/L12 (rpl7/l12) 31-FGVSATPTVVAGAAVAGGAAAESEEK-56 HP1199
40~41 14.0 Ribosomal protein S11 (rps11) 59-STPYAAQQAVESALSK-74 HP1295
42~43 7.2 Copper ion binding protein (copP) 40-SVVVEFDAPATQDLIK-55 HP1093
42~43 17.5 Flavodoxin (fldA) 134-FVGLVIDEDNQDDLTDER-151 HP1161
42~43 53.1 Hypothetical protein HP1083 322-AGTAGQSLLIR-332 HP1083
42~43 17.5 Flavodoxin (fldA) 4-IGIFFGTDSGNAEAIAEK-21 HP1161
42~43 69.7 Outer membrane protein (omp27) 610-IPTINTNYYSFLDTK-624 HP1177
44~45 19.1 Membrane-associated lipoprotein 152-VFVLVGLDK-160 HP1456
44~45 11.9 Thioredoxin (trxA) 72-SIPTLLFTK-80 HP0824
44~45 26.5 Urease, alpha subunit (ureA) 195-IFGFNALVDR-204 HP0073
44~45 18.3 Adhesin thiol peroxidase (tagD) 147-EIVQNILEEPNYEALLK-163 HP0390
44~45 26.8 Outer membrane protein (omp30) 90-LKNPNYNNEVVQLAGQVLGK-108 HP1395
44~45 18.3 ubiquinol cytochrome c oxidoreductase, Rieske 2Fe-2S subunit (fbcF) 123-GRFTSDGVNIAGTPPPRPFDIPPFK-145 HP1540
44~45 20.6 Hypothetical protein (HP1173) 159-ISLVGNFDGTGFLTEYK-175 HP1173
46~47 21.9 lipoprotein, putative (Hypothetical protein) 127-LGIYINPNNQEVFALVR-143 HP0596
46~47 58.6 Catalase 29-GPVLLQSTWFLEK-41 HP0875
46~47 77.7 Outer membrane protein (omp2) 681-IPTINTNYYSLLGTTLQYR HP0025
46~47 43.0 Outer membrane protein (omp32) 331-IPTLPNYFFK-340 HP1501
46~47 22.2 Alkyl hydroperoxide reductase (ahpC) 112-DYDVLFEEAIALR-124 HP1563
46~47 20.4 Hypothetical protein (HP0305) 87-EAFFALFK-94 HP0305
46~47 16.9 Neutrophil activating protein (napA) 90-DIFKEILEDYK-100 HP0243
46~47 20.4 Hypothetical protein (HP0305) 87-EAFFALFK-94 HP0305
48~49 16.1 Ribosomal protein L13 (rpl13) 27-LITEIAVLLR-36 HP0084
48~49 57.1 Outer membrane protein (omp21) 465-FQFLFDVGLR-474 HP0913
50~52 22.2 Alkyl hydroperoxide reductase (ahpC) 112-DYDVLFEEAIALR-124 HP1563
42~43 53.1 Hypothetical protein HP1083 322-AGTAGQSLLIR-332 HP1083
42~43 17.5 Flavodoxin (fldA) 4-IGIFFGTDSGNAEAIAEK-21 HP1161
42~43 69.7 Outer membrane protein (omp27) 610-IPTINTNYYSFLDTK-624 HP1177
44~45 19.1 Membrane-associated lipoprotein 152-VFVLVGLDK-160 HP1456
44~45 11.9 Thioredoxin (trxA) 72-SIPTLLFTK-80 HP0824
44~45 26.5 Urease, alpha subunit (ureA) 195-IFGFNALVDR-204 HP0073
44~45 18,.3 Adhesin thiol peroxidase (tagD) 147-EIVQNILEEPNYEALLK-163 HP0390
44~45 26.8 Outer membrane protein (omp30) 90-LKNPNYNNEVVQLAGQVLGK-108 HP1395
44~45 18.3 ubiquinol cytochrome c oxidoreductase, Rieske 2Fe-2S subunit (fbcF) 123-GRFTSDGVNIAGTPPPRPFDIPPFK-145 HP1540
44~45 20.6 Hypothetical protein (HP1173) 159-ISLVGNFDGTGFLTEYK-175 HP1173
46~47∗ 21.9 lipoprotein, putative (Hypothetical protein) 127-LGIYINPNNQEVFALVR-143 HP0596
46~47 58.6 Catalase 29-GPVLLQSTWFLEK-41 HP0875
46~47 77.7 Outer membrane protein (omp2) 681-IPTINTNYYSLLGTTLQYR HP0025
46~47 43.0 Outer membrane protein (omp32) 331-IPTLPNYFFK-340 HP1501
46~47 22.2 Alkyl hydroperoxide reductase (ahpC) 112-DYDVLFEEAIALR-124 HP1563

§ HPLC fraction numbers from figure 2

Unidentified in references

TOOLS
Similar articles