Journal List > J Bacteriol Virol > v.40(1) > 1033981

Lee, Song, Cho, and Yoon: Cross-reactivity of Vaccine and Fields Strains of Bovine Coronaviruses in Korea

Abstract

Bovine coronavirus (BCoV) causes severe diarrhea in newborn calves, and is associated with winter dysentery in adult cattle and respiratory infections in calves and feedlot cattle. Although the Korean BCoV vaccine strain, BC94, was isolated in 1995, there has still been no report of a molecular characterization of the vaccine strain. To characterize the vaccine strain, relationships between BC94 and field strains were investigated, based on sequence analysis and cross-immunity. We determined the complete sequences of the HE, N, and S genes from BC94 and four NVRQS isolates (SUN5, A3, 0501, 0502). Due to its major role in antigenicity, the spike proteins of the BCoVs were analyzed. BC94 showed distinctive genetic divergence from field isolates collected from 2002 to 2005. BC94, SUN5, and A3 had no virulence-specific sequence and there was a single amino acid change, from asparagine to lysine at residue 175, in the polymorphic region. Strains 0501 and 0502 had virulence-specific sequences at all seven sites. Although the recently isolated Korean BCoVs and BC94 were genetically different, the cleavage site of spike genes at 763~768 (KRRSRR) and the antigenic domain II of the spike protein, amino acid position 528, were conserved in all NVRQS isolates. The antigenic relatedness of KCD9, representative of recent Korean BCoVs, was compared with the Korean vaccine strain BC94. KCD9 showed cross-reactivity against BC94 by virus neutralization (VN) test. These results suggest that BC94 is antigenically closely related to field isolates and is still effective as a vaccine strain.

REFERENCES

1). Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol. 1997. 142:629–33.
2). Cho KO., Halbur PG., Bruna JD., Sorden SD., Yoon KJ., Janke BH., Chang KO., Saif LJ. Detection and isolation of coronavirus from feces of three herds of feedlot cattle during outbreaks of winter dysentery-like disease. J Am Vet Med Assoc. 2000. 217:1191–4.
crossref
3). Clark MA. Bovine coronavirus. Br Vet J. 1993. 149:51–70.
4). Lathrop SL., Wittum TE., Brock KV., Loerch SC., Perino LJ., Bingham HR., McCollum FT., Saif LJ. Association between infection of the respiratory tract attributable to bovine coronavirus and health and growth performance of cattle in feedlots. Am J Vet Res. 2000. 61:1062–6.
crossref
5). Saif LJ., Brock KV., Redman DR., Kohler EM. Winter dysentery in dairy herds: electron microscopic and serological evidence for an association with coronavirus infection. Vet Rec. 1991. 128:447–9.
crossref
6). Storz J., Purdy CW., Lin X., Burrell M., Truax RE., Briggs RE., Frank GH., Loan RW. Isolation of respiratory bovine coronavirus, other cytocidal viruses, and Pasteurella spp from cattle involved in two natural outbreaks of shipping fever. J Am Vet Med Assoc. 2000. 216:1599–604.
7). Lai MM., Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997. 48:1–100.
crossref
8). Schultze B., Gross HJ., Brossmer R., Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol. 1991. 65:6232–7.
crossref
9). Schultze B., Wahn K., Klenk HD., Herrler G. Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology. 1991. 180:221–8.
crossref
10). Cavanagh D., Davis PJ. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol. 1986. 67:1443–8.
crossref
11). Saeki K., Ohtsuka N., Taguchi F. Identification of spike protein residues of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants. J Virol. 1997. 71:9024–31.
crossref
12). Yoo D., Parker MD., Babiuk LA. Analysis of the S spike (peplomer) glycoprotein of bovine coronavirus synthesized in insect cells. Virology. 1990. 179:121–8.
crossref
13). Storz J., Rott R., Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infect Immun. 1981. 31:1214–22.
crossref
14). Sturman LS., Ricard CS., Holmes KV. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol. 1985. 56:904–11.
crossref
15). Deregt D., Babiuk LA. Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology. 1987. 161:410–20.
crossref
16). Grosse B., Siddell SG. Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1 subunit-specific monoclonal antibody. Virology. 1994. 202:814–24.
crossref
17). Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. J Virol. 1989. 63:1408–12.
crossref
18). Chouljenko VN., Kousoulas KG., Lin X., Storz J. Nucleotide and predicted amino acid sequences of all genes encoded by the 3′ genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes. 1998. 17:33–42.
19). Zuo X., Xiao Y., Plaxco KW. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc. 2009. 131:6944–5.
crossref
20). Lin XQ., KL Oe., Storz J., Purdy CW., Loan RW. Antibody responses to respiratory coronavirus infections of cattle during shipping fever pathogenesis. Arch Virol. 2000. 145:2335–49.
crossref
21). Yoo D., Deregt D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol. 2001. 8:297–302.
crossref
22). Abraham S., Kienzle TE., Lapps W., Brian DA. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology. 1990. 176:296–301.
crossref
23). Boireau P., Cruciere C., Laporte J. Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. J Gen Virol. 1990. 71:487–92.
crossref
24). Storz J., Zhang XM., Rott R. Comparison of hemag-glutinating, receptor-destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains. Arch Virol. 1992. 125:193–204.
crossref
25). Zhang XM., Kousoulas KG., Storz J. Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology. 1991. 183:397–404.
crossref
26). Rekik MR., Dea S. Comparative sequence analysis of a polymorphic region of the spike glycoprotein S1 subunit of enteric bovine coronavirus isolates. Arch Virol. 1994. 135:319–31.
27). Hasoksuz M., Sreevatsan S., Cho KO., Hoet AE., Saif LJ. Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine corona-virus isolates. Virus Res. 2002. 84:101–9.
crossref
28). Ko CK., Kang MI., Lim GK., Kim GY., Yoon SS., Park JT., Jeong C., Park SH., Park SJ., Kim YJ., Jeong JH., Kim SK., Park SI., Kim HH., Kim KY., Cho KO. Molecular characterization of HE, M, and E genes of winter dysentery bovine coronavirus circulated in Korea during 2002~2003. Virus Genes. 2006. 32:129–36.
crossref
29). Jeong JH., Kim GY., Yoon SS., Park SJ., Kim YJ., Sung CM., Shin SS., Lee BJ., Kang MI., Park NY., Koh HB., Cho KO. Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002~2003. Virus Res. 2005. 108:207–12.
crossref
30). Park SJ., Jeong C., Yoon SS., Choy HE., Saif LJ., Park SH., Kim YJ., Jeong JH., Park SI., Kim HH., Lee BJ., Cho HS., Kim SK., Kang MI., Cho KO. Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons. J Clin Microbiol. 2006. 44:3178–88.
crossref
31). Yang DK., Kweon CH., Kim BH., Park JK., So BJ., Song JY. Serological Survey of Bovine Coronavirus in Korea. J Bacteriol Virol. 2007. 37:105–9.
crossref
32). Han MG., Cheon DS., Zhang X., Saif LJ. Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves. J Virol. 2006. 80:12350–6.
crossref
33). Laude H., Talbot PJ., Levy GA. Corona related Virus: Functional Domains in the Spike Protein of Transmissible Gastroenteritis Virus. Plenum Press, New York. 1995. 299–394.
34). Park SJ., Lim GK., Park SI., Kim HH., Koh HB., Cho KO. Detection and molecular characterization of calf diarrhoea bovine coronaviruses circulating in South Korea during 2004~2005. Zoonoses Public Health. 2007. 54:223–30.
crossref

Figure 1.
Phylogenic tree of BCV HE. Mebus, L9, F15, LY-138, ENT, vaccine strain M64668, Korean vaccine BC94, SUN5, 0501, 0502, KWDs, and KCDs were analyzed by using Clustal W multiple alignment method of MegAlign program in DNAstar.
jbv-40-49f1.tif
Figure 2.
Phylogenic tree of BCV N. Mebus, L9, F15, LY-138, ENT, vaccine strain M64668, Korean vaccine BC94, SUN5, 0501 and 0502 were analyzed by using Clustal W multiple alignment method of MegAlign program in DNAstar.
jbv-40-49f2.tif
Figure 3.
Phylogenic tree of spike proteins of Mebus, L9, F15, LY-138, ENT, vaccine strain M64668, Korean vaccine BC94, SUN5, 0501, 0502, KWDs, and KCDs were made using Clustal W multiple alignment method of MegAlign program in DNAstar.
jbv-40-49f3.tif
Figure 4.
Comparison of the deduced amino acid sequences of hypervariable region in spike proteins. Light-gray boxes contain respiratory bovine coronavirus (RBCV)-specific; dark-gray boxes contain virulent-specific and black boxes show significant sequence compared to recent Korean wide-spread BCoVs.
jbv-40-49f4.tif
Table 1.
The oligonucleotide primers of HE, N and S gene. Mebus strain (GenBank accession No. U00735) used for DNA cloning and sequencing
Gene name Primer name Sequence Location Reference
S S1F 5′-ATGTTTTTGATACTTTTAATTTCC-3′ S gene 1~920 30
  S1R 5′-ACACCAGTAGATGGTGCTAT-3′    
  S2F 5′-GGGTTACACCTCTCACTTCT-3′ S gene 782~1550  
  S2R 5′-GCAGGACAAGTGCCTATACC-3′    
  S3F 5′-CTGTCCGTGTAAATTGGATG-3′ S gene 1459~2286  
  S3R 5′-TGTAGAGTAATCCACACGT-3′    
  S4F 5′-TTCACGACAGCTGCAACCTA-3′ S gene 2151~3022  
  S4R 5′-CCATGGTAACACCAATCCCA-3′    
  S5F 5′-CCCTGTATTAGGTTGTTTAG-3′ S gene 2691~3606  
  S5R 5′-ACCACTACCAGTGAACATCC-3′    
  S6F 5′-GTGCAGAATGCTCCATATGGT-3′ S gene 3439~4092  
  S6R 5′-TTAGTCGTCATGTGATGTTT-3′    
HE HEF 5′-GGATCCATGTTTTTGCTTCCT-3′ HE gene 1~1275  
  HER 5′-CTCGAGTTATCGTAGTACGTCGGA-3′    
N NF 5′-GGATCCATGTTTTTGCTTCCT-3′ N gene 1~1347  
  NR 5′-CTCGAGTTATATTTCTGAGTGTCTTCT-3′    
Table 2.
The GenBank accession numbers of reference strains of BCV vaccine and field isolates
Strain Year HE S N
BC94 Korean vaccine 1994 EU401979 EU401989 EU401985
SUN5 1994 EU401978 EU401988 EU401984
A3 1994 EU401977 EU401987 EU401983
0501 2005 EU401975 EU686689 EU401980
0502 2005 EU401976 EU401986 EU401981
Mebus 1972 U00735 U00735 U00735
L9 1991 M76372 M64667  
Norden vaccine 1991   M64668  
F15 1979   D00731 M36656
LY138 1965 AF058942 AF058942 AF058942
ENT 1998 AF391542 AF391542 AF391542
LSU 1994 AF058943 AF058943 AF058943
OK 1996 AF058944 AF058944 AF058944
KCD1 2004 DQ389642 DQ389632  
KCD2 2004 DQ389643 DQ389633  
KCD3 2004 DQ389644 DQ389634  
KCD4 2004 DQ389645 DQ389635  
KCD5 2004 DQ389646 DQ389636  
KCD6 2004 DQ389647 DQ389637  
KCD7 2004 DQ389648 DQ389638  
KCD8 2004 DQ389649 DQ389639  
KCD9 2004 DQ389650 DQ389640  
KWD1 2002 DQ016118 AY935637  
KWD2 2002 DQ016119 AY935638  
KWD3 2002 DQ016120 AY935639  
KWD4 2002 DQ016121 AY935640  
KWD5 2002 DQ016122 AY935641  
KWD6 2002 DQ016123 AY935642  
KWD7 2002 DQ016124 AY935643  
KWD8 2002 DQ016125 AY935644  
KWD9 2002 DQ016126 AY935645  
KWD10 2002 DQ016127 AY935646  
KWD11 2002 DQ994162 DQ389652  
KWD12 2002 DQ994163 DQ389653  
KWD13 2002 DQ994164 DQ389654  
KWD14 2002 DQ994165 DQ389655  
KWD15 2002 DQ994166 DQ389656  
KWD16 2002 DQ994167 DQ389657  
KWD17 2002 DQ994168 DQ389658  
KWD18 2002 DQ994169 DQ389659  
KWD19 2002 DQ994170 DQ389660  
Table 3.
Cross-reactivity of KCD9 and Korean vaccine strain determined by VN tests
BCV strain VN antibody titers (log2)
KCD9 Korean strain
KCD9 6.00±1.15 6.67±0.52
Korean vaccine 5.75±0.96 6.17±0.98
TOOLS
Similar articles