Journal List > J Bacteriol Virol > v.40(4) > 1033968

Oh, Lee, and Paik: Antiviral Activity of Lactobacillus spp. and Polysaccharide

Abstract

Lactobacillus species have been widely used in both human and animals to prevent or treat gastrointestinal disorders. Recently, it was reported that Lactobacillus spp. inhibited infections by respiratory and gastroenteric viruses; however, its mechanism is not clear. Lactobacillus spp. play direct and indirect roles in the inhibitory effects of viral replication. 1) In vitro study: Highest protection effects were showed with the known probiotics L. rhamnosus GG (LGG) and L. casei Shirota against both rotavirus (RV) and transmissible gastroenteritis virus (TGEV). 2) In vivo study: L. acidophilus had significant immunopotentiating effects, and was therefore recommended for use as a safe oral adjuvant for rotavirus vaccines in pigs. Oral administration of lactobacilli, such as LGG and L. gasseri, might protect a host animal from influenza virus (IFV) infection. Polysaccharides are regarded to be potentially useful and biologically active as an ingredient for pharmaceutical uses due to a variety of biological activities. Especially, sulphated polysaccharides exhibit broad-spectrum antiviral activity against enveloped viruses in vitro. With respect to human immunodeficiency virus type 1 (HIV-1), its in vitro antiviral activity is, specifically, the inhibition of virus-cell attachment, the first step in the infection process. Recently, it was reported that sulphated polysaccharides exhibited antiviral activity against HBV, HCMV, HSV and IFV. In conclusion, Lactobacillus spp. and polysaccharides with antiviral activity against diverse viruses are potential candidates as ingredients for probiotics and medicine candidate for the prevention and treatment of viral infections in animals and humans.

REFERENCES

1). Seo BJ., Mun MR., J RK., Kim CJ., Lee I., Chang YH, et al. Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus. Vet Res Commun. 2010. 34:323–33.
2). Olivares M., Díaz-Ropero MP., Sierra S., Lara-Villoslada F., Fonolla J., Navas M, et al. Oral intake of Lactobacillus fermentum CECT5716 enhances the effect of influenza vaccination. Nutrition. 2007. 23:254–60.
3). De Vrese M., Rautenberg P., Laue C., Koopmans M., Herremans T., Schrezenmeir J. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr. 2005. 44:406–13.
4). Sutherland IW. Microbial exopolysacchride synthesis. Stanford PA, Laskin A, editors. (eds),. Extracellular microbial polysaccharides. Washington D.C.: ACS;1977. p. 40–57.
5). Sutherland IW. Extracellular polysaccharides. In Biotechnology. Verlag Chemie. Weinheim. 1983. Vol.3. p.533–74.
6). Witvrouw M., De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol. 1997. 29:497–511.
crossref
7). Hasui M., Matsuda M., Okutani K., Shigeta S. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int J Biol Macromol. 1995. 17:293–7.
8). Nakashima H., Kido Y., Kobayashi N., Motoki Y., Neushul M., Yamamoto N. Antiretroviral activity in a marine red alga: Reverse transcriptase inhibition by an aqueous extract of Schizymenia pacica. J Cancer Res Clin Oncol. 1987. 113:413–6.
9). Maragkoudakis PA., Chingwaru W., Gradisnik L., Tsakalidou E., Cencic A. Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int J Food Microbiol. 2010. 141:S91–7.
crossref
10). Zhang W., Azevedo MS., Wen K., Gonzalez A., Saif LJ., Li G, et al. Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine. 2008. 26:3655–61.
11). Martín V., Maldonado A., Fernández L., Rodríguez JM., Connor RI. Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeed Med. 2010. 5:153–8.
crossref
12). Yasui H., Kiyoshima J., Hori T. Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota. Clin Diagn Lab Immunol. 2004. 11:675–9.
13). Kawase M., He F., Kubota A., Harata G., Hiramatsu M. Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett Appl Microbiol. 2010. 51:6–10.
crossref
14). Harata G., He F., Hiruta N., Kawase M., Kubota A., Hiramatsu M, et al. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett Appl Microbiol. 2010. 50:597–602.
15). Kumar RV., Seo BJ., Mun MR., Kim CJ., Lee I., Kim H, et al. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod. 2010. 42:1855–60.
16). Lembo D., Donalisio M., Rusnati M., Bugatti A., Cornaglia M., Cappello P, et al. Sulfated K5 Escherichia coli polysaccharide derivatives as wide-range inhibitors of genital types of human papillomavirus. Antimicrob Agents Chemother. 2008. 52:1374–81.
17). Pinna D., Oreste P., Coradin T., Kajaste-Rudnitski A., Ghezzi S., Zoppetti G, et al. Inhibition of herpes simplex virus types 1 and 2 in vitro infection by sulfated derivatives of Escherichia coli K5 polysaccharide. Antimicrob Agents Chemother. 2008. 52:3078–84.
18). Vicenzi E., Gatti A., Ghezzi S., Oreste P., Zoppetti G., Poli G. Broad spectrum inhibition of HIV-1 infection by sulfated K5 Escherichia coli polysaccharide derivatives. AIDS. 2003. 17:177–81.
19). Mercorelli B., Oreste P., Sinigalia E., Muratore G., Lembo D., Palù G, et al. Sulfated derivatives of Escherichia coli K5 capsular polysaccharide are potent inhibitors of human cytomegalovirus. Antimicrob Agents Chemother. 2010. 54:4561–7.
20). Wang SC., Bligh SW., Shi SS., Wang ZT., Hu ZB., Crowder J, et al. Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int J Biol Macromol. 2007. 41:369–75.
21). Talarico LB., Pujol CA., Zibetti RG., Faría PC., Noseda MD., Duarte ME, et al. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res. 2005. 66:103–10.
crossref
22). Matsuda M., Shigeta S., Okutani K. Antiviral activities of marine pseudomonas polysaccharides and their oversulfated derivatives. Mar Biotechnol. 1999. 1:68–73.
crossref
23). Huleihel M., Ishanu V., Tal J., Arad S. Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol. 2001. 13:127–34.
24). Lee IH., Huang RL., Chen CT., Chen HC., Hsu WC., Lu MK. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett. 2002. 209:63–7.

Table 1.
List of Lactobacillus spp. and polysaccharide showing antiviral activity
Origin Pathogen Lactobacillus spp. Polysaccharide
  Rotavirus L. rhamnosus GG  
    L. casei Shirota  
    L. plantarum PCA236  
Animal Transmissible gastroenteritis virus L. rhamnosus GG  
    L. casei Shirota  
    L. plantarum PCA236  
  Coronavirus L. plantarum Probio-38  
    L. salivaris Probio-37  
  Rotavirus L. acidophilus  
  HIV-1 Lactobacillus Sulfated Derivarives of Grateloupia filicina and Grateloupia longifolia
    Pediococcus  
  Influenza virus L. casei Shirota  
    L. rhamnosus GG Glycosaminoglycan of Pseudomonas
Human   L. gasseri TMC03  
  Cytomegalovirus   Sulfated Derivarives of E. coli K5
  Dengue virus   Sulfated Derivarives of Gymnogongrus griffithsiae and Cryptonemia crenulata
  Herpes simplex virus   Sulfated Derivarives of Porphyridium sp.
  Hepatitis B virus   Antrodia camphorate
TOOLS
Similar articles