Journal List > J Bacteriol Virol > v.39(4) > 1033952

Shin, Oem, Yoon, Hyun, Cho, Yoon, and Song: Monitoring of Five Bovine Arboviral Diseases Transmitted by Arthropod Vectors in Korea

Abstract

A survey was performed in Korea to monitor the prevalence of five bovine arboviruses [Akabane virus, Aino virus, Chuzan virus, bovine ephemeral fever (BEF) virus, and Ibaraki virus] in arthropod vectors, such as Culicoides species. To determine the possible applications of survey data in annual monitoring and warning systems in Korea, we examined the prevalence of bovine arboviruses in arthropod vectors using RT-PCR. To compare the sensitivity and specificity of virus detection, nested PCR was also performed in parallel for all five viruses. Using the RT-PCR, the detection limits were at least up to 101.5, 102.8, 102.0, 101.8, and 104.0 TCID50/ml for Akabane virus, Aino virus, Chuzan virus, BEF virus, and Ibaraki virus, respectively. When nested PCR was performed using 1 μl of PCR product, the detection limits were increased, to 100.05, 101.8, 101.0, 100.008, and 102.0 TCID50/ml for Akabane virus, Aino virus, Chuzan virus, BEF virus, and Ibaraki virus, respectively. Thus, nested PCR increased the sensitivity of the virus detection limit by 1~2 log. We pooled 30~40 mosquitoes in one sample. We collected 113 samples in 2006, 135 samples in 2007, and 100 samples in 2008. Among these samples, Chuzan virus and BEF virus genes were detected at a range between 0.82% and 1.19%, and Akabane virus, Aino virus, and Ibaraki virus genes were detected at less than 0.20%. These data may provide some insight into future epidemiological studies of bovine arboviral diseases in Korea.

REFERENCES

1). Cybinski DH., St George TD., Paull NI. Antibodies to Akabane virus in Australia. Aust Vet J. 1978. 54:1–3.
crossref
2). Inaba Y., Kurogi H., Omori T. Letter: Akabane disease: epizootic abortion, premature birth, stillbirth and congenital arthrogryposis-hydranencephaly in cattle, sheep and goats caused by Akabane virus. Aust Vet J. 1975. 51:584–5.
3). Coverdale OR., Cybinski DH., St George TD. Congenital abnormalities in calves associated with Akabane virus and Aino virus. Aust Vet J. 1978. 54:151–2.
crossref
4). Haziroglu R., Haritani M., Narita M. Demonstration of Akabane virus antigen in experimentally infected mice using immunoperoxidase method. Nippon Juigaku Zasshi. 1987. 49:133–5.
crossref
5). Hartley WJ., Wanner RA., Della-Porta AJ., Snowdon WA. Serological evidence for the association of Akabane virus with epizootic bovine congenital arthrogryposis and hydranencephaly syndromes in New South Wales. Aust Vet J. 1975. 51:103–4.
crossref
6). Charles JA. Akabane virus. Vet Clin North Am Food Anim Pract. 1994. 10:525–46.
crossref
7). Matumoto M. [Akabane disease and Akabane virus]. Uirusu. 1980. 30:1–10.
8). Mellor PS., Jennings DM., Braverman Y., Boorman J. Infection of Israeli Culicoides with African horse sickness, blue tongue and akabane viruses. Acta Virol. 1981. 25:401–7.
9). Ishibashi K., Shirakawa H., Uchinuno Y., Ogawa T. Seroprevalence survey of Aino virus infection in dairy cattle of Fukuoka, Japan in 1990. J Vet Med Sci. 1995. 57:1–4.
crossref
10). Miura Y., Inaba Y., Tsuda T., Tokuhisa S., Sato K., Akashi H., Matumoto M. A survey of antibodies to arthropodborne viruses in Indonesian cattle. Nippon Juigaku Zasshi. 1982. 44:857–63.
crossref
11). Tsuda T., Yoshida K., Ohashi S., Yanase T., Sueyoshi M., Kamimura S, et al. Arthrogryposis, hydranencephaly and cerebellar hypoplasia syndrome in neonatal calves resulting from intrauterine infection with Aino virus. Vet Res. 2004. 35:531–8.
crossref
12). Cybinski DH., St George TD. A survey of antibody to Aino virus in cattle and other species in Australia. Aust Vet J. 1978. 54:371–3.
crossref
13). Uchinuno Y., Noda Y., Ishibashi K., Nagasue S., Shirakawa H., Nagano M., Ohe R. Isolation of Aino virus from an aborted bovine fetus. J Vet Med Sci. 1998. 60:1139–40.
crossref
14). Kim YH., Kwon CH., Yang DK. Development of inactivated vaccine for Akabane, Aino and Chuzan Disease. NVRQS Annual Research Report. 2005. 962–75.
15). Cybinski DH., Zakrzewski H. A dual infection of a bull with Akabane and Aino viruses. Aust Vet J. 1983. 60:283.
crossref
16). Fukuyoshi S., Takehara Y., Takahashi K., Mori R. The incidence of antibody to Aino virus in animals and humans in Fukuoka. Jpn J Med Sci Biol. 1981. 34:41–3.
crossref
17). NVRI. Isolation of Aino virus from malformed calves in Kyung-Book Province. NVRI Case Report. 1997.
18). Burgess GW., Chenoweth PJ. Mid-piece abnormalities in bovine semen following experimental and natural cases of bovine ephemeral fever. Br Vet J. 1975. 131:536–44.
crossref
19). Burgess GW., Spradbrow PB. Studies on the pathogenesis of bovine ephemeral fever. Aust Vet J. 1977. 53:363–8.
crossref
20). Goto Y., Miura Y., Kono Y. Serologic evidence for the etiologic role of Chuzan virus in an epizootic of congenital abnormalities with hydranencephaly-cerebellar hypoplasia syndrome of calves in Japan. Am J Vet Res. 1988. 49:2026–9.
21). Goto Y., Miura Y., Kono Y. Epidemiological survey of an epidemic of congenital abnormalities with hydranencephaly-cerebellar hypoplasia syndrome of calves occurring in 1985/86 and seroepidemiological investigations on Chuzan virus, a putative causal agent of the disease, in Japan. Nippon Juigaku Zasshi. 1988. 50:405–13.
crossref
22). Miura Y., Goto Y., Kubo M., Kono Y. Isolation of Chuzan virus, a new member of the Palyam subgroup of the genus Orbivirus, from cattle and Culicoides oxystoma in Japan. Am J Vet Res. 1988. 49:2022–5.
23). Miura Y., Kubo M., Goto Y., Kono Y. Hydranencephaly-cerebellar hypoplasia in a newborn calf after infection of its dam with Chuzan virus. Nippon Juigaku Zasshi. 1990. 52:689–94.
crossref
24). Kurogi H., Matumoto M. Serological comparison of Kagoshima and Chuzan viruses of Palyam serogroup orbivirus isolated in Japan. Kitasato Arch Exp Med. 1989. 62:199–201.
25). Della-Porta AJ., Brown F. The physico-chemical characterization of bovine ephemeral fever virus as a member of the family Rhabdoviridae. J Gen Virol. 1979. 44:99–112.
26). Nandi S., Negi BS. Bovine ephemeral fever: a review. Comp Immunol Microbiol Infect Dis. 1999. 22:81–91.
crossref
27). Combs GP. Bovine ephemeral fever. Proc Annu Meet U S Anim Health Assoc. 1978. 29–35.
28). Heuschele WP. Bovine ephemeral fever. I. Characteristics of the causative virus. Arch Gesamte Virusforsch. 1970. 30:195–202.
29). Heuschele WP., Johnson DC. Bovine ephemeral fever. II. Responses of cattle to attenuated and virulent virus. Proc Annu Meet U S Anim Health Assoc. 1969. 73:185–95.
30). Walker PJ. Bovine ephemeral fever in Australia and the world. Curr Top Microbiol Immunol. 2005. 292:57–80.
crossref
31). Uren MF., St George TD., Kirkland PD., Stranger RS., Murray MD. Epidemiology of bovine ephemeral fever in Australia 1981-1985. Aust J Biol Sci. 1987. 40:125–36.
crossref
32). Walker PJ., Cybinski DH. Bovine ephemeral fever and rhabdoviruses endemic to Australia. Aust Vet J. 1989. 66:398–400.
crossref
33). Tzipori S., Spradbrow PB. Development and behaviour of a strain of bovine ephemeral fever virus with unusual host range. J Comp Pathol. 1974. 84:1–8.
crossref
34). Tzipori S., Spradbrow PB. The effect of bovine ephemeral fever virus on the bovine foetus. Aust Vet J. 1975. 51:64–6.
crossref
35). Suzuki Y., Saito Y., Nakagawa S. Double-stranded RNA of Ibaraki virus. Virology. 1977. 76:670–4.
crossref
36). Suzuki Y., Nakagawa S., Namiki M., Saito Y. RNA and protein of Ibaraki virus. Kitasato Arch Exp Med. 1978. 51:61–71.
37). Omori T., Inaba Y., Morimoto T., Tanaka Y., Kono M. Ibaraki virus, an agent of epizootic disease of cattle resembling bluetongue. II. Isolation of the virus in bovine cell culture. Jpn J Microbiol. 1969. 13:159–68.
38). Inaba Y., Tanaka Y., Ishii S., Morimoto T., Sato K. Ibaraki virus, an agent of epizootic disease of cattle resembling bluetongue. IV. Physicochemical and serological properties of the virus. Jpn J Microbiol. 1970. 14:351–60.
39). Omori T., Inaba Y., Morimoto T., Tanaka Y., Ishitani R. Ibaraki virus, an agent of epizootic disease of cattle resembling bluetongue. I. Epidemiologic, clinical and pathologic observations and experimental transmission to calves. Jpn J Microbiol. 1969. 13:139–57.
40). Bak UB LC., Cheong CK., Hwang WS., Cho MR. Outbreaks of Akabane disease of cattle in Korea. Korean J Vet Res. 1980. 20:65–78.
41). Park B. An outbreak of Chuzan disease in Korea and the immunogenicity of binary ethylenimine-treated chuzan virus vaccine in cattle. Korean J Vet Publ Hlth. 1993. 17:301–5.
42). Song GC., Kang BJ. Development of vaccine and diagnostic methods for bovine ephemeral fever. NVRQS Annual Research Report. 1970. 61–8.
43). Park BK. Characterization of Ibaraki virus isolated in Korea. NVRQS Annual Report. 1993.
44). Mellor PS., Boorman J., Baylis M. Culicoides biting midges: their role as arbovirus vectors. Annu Rev Entomol. 2000. 45:307–40.
crossref
45). Cho HC., Chong CS. Notes on biting midges of the genus culicoides from South Korea: with special reference to unrecorded species and distribution. Kisaengchunghak Chapchi. 1974. 2:45–75.
46). Park BK. Monitoring of bovine ephemeral fever, Ibaraki disease and Akabane disease in Korea. NVRQS Annual Report. 1992.
47). Allingham PG., Standfast HA. An investigation of transovarial transmission of Akabane virus in Culicoides brevitarsis. Aust Vet J. 1990. 67:273–4.
crossref
48). Jennings M., Mellor PS. Culicoides: biological vectors of Akabane virus. Vet Microbiol. 1989. 21:125–31.
crossref
49). Kurogi H., Akiba K., Inaba Y., Matumoto M. Isolation of Akabane virus from the biting midge Culicoides oxystoma in Japan. Vet Microbiol. 1987. 15:243–8.
50). Murray MD. Akabane epizootics in New South Wales: evidence for long-distance dispersal of the biting midge Culicoides brevitarsis. Aust Vet J. 1987. 64:305–8.
51). St George TD., Standfast HA., Cybinski DH. Isolations of akabane virus from sentinel cattle and Culicoides brevitarsis. Aust Vet J. 1978. 54:558–61.
52). Theodoridis A., Nevill EM., Els HJ., Boshoff ST. Viruses isolated from Culicoides midges in South Africa during unsuccessful attempts to isolate bovine ephemeral fever virus. Onderstepoort J Vet Res. 1979. 46:191–8.
53). Venter GJ., Hamblin C., Paweska JT. Determination of the oral susceptibility of South African livestock-associated biting midges, Culicoides species, to bovine ephemeral fever virus. Med Vet Entomol. 2003. 17:133–7.
crossref
54). REED M. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938. 27:493–7.
55). Akashi H., Onuma S., Nagano H., Ohta M., Fukutomi T. Detection and differentiation of Aino and Akabane Simbu serogroup bunyaviruses by nested polymerase chain reaction. Arch Virol. 1999. 144:2101–9.
crossref
56). Cho JJ. Development of antigen detection method for bovine ephemeral fever virus. NVRQS Annual Report. 1997.
57). Uchinuno Y., Ito T., Goto Y., Miura Y., Ishibashi K., Itou T., Sakai T. Differences in Ibaraki virus RNA segment 3 sequences from three epidemics. J Vet Med Sci. 2003. 65:1257–63.
crossref
58). Stram Y., Kuznetzova L., Guini M., Rogel A., Meirom R., Chai D., Yadin H., Brenner J. Detection and quantitation of akabane and aino viruses by multiplex real-time reverse-transcriptase PCR. J Virol Methods. 2004. 116:147–54.
crossref
59). Ministry of Food A, Forestry and Fisheries, Republic of Korea. Act on the Prevention of Cotagious Animal Diseases. 2008.
60). Ministry of Food, Agriculture, Forestry and Fisheries, Republic of Korea. National Project for the Prevention of Contagious Animal Diseases. 2009.
61). Disease Diagnostic Center NVRQS. Monitoring of Seroprevalence against five bovine arboviral diseases in Korea in 2008. 2008.

Figure 1.
Detection limits determined by spiking Aino virus and Ibaraki virus into supernatant from Culicoides species. Five microliters of each PCR product from PBS-diluted virus or supernatant from Culicoides species were applied to a 1% agarose gel as follows: (A) Aino virus. Virus diluted in PBS (upper). 1: Marker, 2~9: diluted Aino virus, 10: negative control. Virus diluted in Culicoides species supernatant (bottom). 1: Marker, 2~9: diluted Aino virus, 10: negative control (B) Ibaraki virus. Virus diluted in PBS (upper). 1: Marker, 2~9: diluted Ibaraki virus, 10: negative control. Virus diluted in Culicoides species supernatant (bottom). 1: Marker, 2~9: diluted Ibaraki virus, 10: negative control.
jbv-39-353f1.tif
Figure 2.
Prevalence of five bovine arboviral genes in arthropod vectors by nested PCR amplifications. RT-PCR, and subsequently nested PCR, were performed on RNA from pooled Culicoides species supernatant. Five microliters of the product from nested PCR were applied to a 1% agarose gel as follows: (A) nested PCR for Akabane virus. 1: Marker, 2~14: samples (5: Akabane virus positive sample), 15: negative control, 16: positive control, 17: Marker (B) nested PCR for Aino virus. 1: Marker, 2~14: samples (6: Aino virus positive sample), 15: negative control, 16: positive control, 17: Marker (C) nested PCR for Chuzan virus. 1: Marker, 2~14: samples (4, 7, 12: Chuzan virus positive sample), 15: negative control, 16: positive control, 17: Marker (D) nested PCR for BEF virus. 1: Marker, 2: positive control, 3: negative control, 4~16: samples (5, 6, 7, 9, 10, 13, 14, 15, 16: BEF virus positive sample), 17: Marker (E) nested PCR for Ibaraki virus. 1: Marker, 2~14: samples (4, 6, 8, 10, 12, 13: Ibaraki virus positive sample), 15: negative control, 16: positive control, 17: Marker.
jbv-39-353f2.tif
Table 1.
The oilognucleotide primers for RT-PCR and nested PCR
Virus PCR type Primer name Primer sequence Location Product size
Akabane virus RT-PCR AKAF1 AKAR1 TAACTACGCATTGCAATGGC TAAGCTTAGATCTGGATACC 19~740 (S segment) 709 bp
  nested AKAF2 AKAR2 GAAGGCCAAGATGGTCTTAC GGCATCACAATTGTGGCAGC 177~407 230 bp
Aino virus RT-PCR AINOF1 AINOR1 CCCAACTCAATTTCGATACC TTTGGAACACCATACTGGGG 132~780 (S segment) 649 bp
  nested AINOF2 AINOR2 CCATCGTCTCTCAGGATATC ACAGCATTGAAGGCTGCACG 313~657 345 bp
Chuzan virus RT-PCR CHUF1 CHUR1 TGGCTTTCTGAGGCGTTTCAGA GGTTGCTCAATATGCCAAGCGA 14~318 (Segment 5) 305 bp
  nested CHUF2 CHUR2 GATGAAGCAGCGGATGTTTT AGCAGGTTAAGCCATACTCT 59~292 220 bp
BEF virus RT-PCR BEFVF1 BEFVR1 CCTACATTGAGAGTGCCACA CTTCCGTGAACAGCAACATC 1677~616 (N gene) 440 bp
  nested BEFVF2 BEFVR2 TGAGAGTGCCACAAGGTAAA GCAGAGCGACCTAATCTATA 184~511 328 bp
Ibaraki virus RT-PCR IBAF1C IBAR1 CCTAGATGTTCAATAGCAAACCTAATT TAACATTTCGTTATAACAATAATAATT 1~660 (Segment 3) 660 bp
  nested IBAF2 IBAR2 ACGTGCTTACCAACAGGAGA TCAAGCTGTCGTGCCATATT 40~353 314 bp
Table 2.
Detection limits of five bovine arboviral genes by RT-PCR and nested PCR
Virus RT-PCR Nested PCR
Akabane virus 101.5 TCID50/ml 100.05 TCID50/ml
Aino virus 102.8 TCID50/ml 101.8 TCID50/ml
Chuzan virus 102.0 TCID50/ml 101.0 TCID50/ml
BEF virus 101.8 TCID50/ml 100.008 TCID50/ml
Ibaraki virus 104.0 TCID50/ml 102.0 TCID50/ml
Table 3.
Detection limits of five bovine arboviral genes by RT-PCR and nested PCR
Year No. of samples No. of positive % (%)a
Akakane Aino Chuzan BEF Ibaraki
    0 4 27 25 2
2006 113 0% (0%) 3.54% (0.10%) 23.89% (0.68%) 22.12% (0.63%) 1.77% (0.05%)
    3 4 48 78 5
2007 135 2.22% (0.06%) 2.96% (0.09%) 35.56% (1.02%) 57.78% (1.65%) 3.70% (0.11%)
    2 0 25 42 13
2008 100 2% (0.06%) 0% (0%) 25% (0.71%) 45% (1.20%) 13% (0.37%)
    5 8 100 145 20
Total 348 1.44% (0.04%) 2.30% (0.07%) 28.74% (0.82%) 41.67% (1.19%) 5.75% (0.16%)

a Percentage from sample numbers converted into numbers before pooling Culicoides species

TOOLS
Similar articles