Abstract
Biofilms are well-organized, complex microbial communities that are often highly resistant to antimicrobial agents and host defenses. Biofilms are often formed on the surfaces of surgical implants and indwelling catheters. Being extremely resistant to removal, biofilms, once formed, cause numerous complications and often result in persistent infections that require long-term hospitalization for treatment. Until now, preventive measures employing prophylactic antimicrobials that prohibit or restrict biofilm formation have been the only feasible, effective options available, with the constant concomitant threat of antimicrobial resistance. However, the development of chemical agents that specifically act upon the virulence of biofilms, rather than destroying the microorganisms or suppressing their growth, is a promising new approach. Such agents are highly desirable in that they might allow clinicians to prevent the development of antimicrobial resistance. Effective suppression of biofilm formation would dramatically change the way to treat infectious disease. In this literature review, the types of infections associated with biofilms and relevant therapeutic options that have been approved, in use, or under development to treat biofilm infections are discussed, along with novel approaches to biofilm control that may be applicable to the development of future anti-biofilm agents.
REFERENCES
1). National Institutes of Health. Minutes of the National Advisory Dental and Craniofacial Research Council − 153rd Meeting. 1997. Report.http://webharvest.gov/peth04/20041027034042. /. http://www.nidcr.nih.gov/AboutNIDCR/CouncilAndCommittees/NADCRC/Minutes/Minutes153.htm.
3). Lynch AS., Robertson GT. Bacterial and fungal biofilm infections. Annu Rev Med. 2008. 59:415–28.
4). Brunstedt MR., Sapatnekar S., Rubin KR., Kieswetter KM., Ziats NP., Merritt K., Anderson JM. Bacteria/blood/material interactions. I. Injected and preseeded slime-forming Staphylococcus epidermidis in flowing blood with biomaterials. J Biomed Mater Res. 1995. 29:455–66.
5). Leid JG., Shirtliff ME., Costerton JW., Stoodley AP. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun. 2002. 70:6339–45.
6). Walker TS., Tomlin KL., Worthen GS., Poch KR., Lieber JG., Saavedra MT., Fessler MB., Malcolm KC., Vasil ML., Nick JA. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun. 2005. 73:3693–701.
7). Chandra J., McCormick TS., Imamura Y., Mukherjee PK., Ghannoum MA. Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun. 2007. 75:2612–20.
8). Zimmermann S., Wagner C., Müller W., Brenner-Weiss G., Hug F., Prior B., Obst U., Hänsch GM. Induction of neutrophil chemotaxis by the quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun. 2006. 74:5687–92.
9). Trampuz A., Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006. 19:349–56.
10). Anderson JM., Marchant RE. Biomaterials: factors favoring colonization and infection. pp.p. 89109. Waldvogel FA, Bisno AL, editors. 2000. Infections Associated with Indwelling Medical Devices. Washington, DC: ASM Press.
11). Costerton JW., Stewart PS., Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999. 284:1318–22.
12). Hansen SK., Rainey PB., Haagensen JA., Molin S. Evolution of species interactions in a biofilm community. Nature. 2007. 445:533–6.
13). Wargo MJ., Hogan DA. Fungal–bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol. 2006. 9:359–64.
14). Mysorekar IU., Hultgren SJ. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA. 2006. 103:14170–5.
15). Hall-Stoodley L., Hu FZ., Gieseke A., Nistico L., Nguyen D., Hayes J., Forbes M., Greenberg DP., Dice B., Burrows A., Wackym PA., Stoodley P., Post JC., Ehrlich GD., Kerschner JE. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006. 296:202–11.
16). Carron MA., Tran VR., Sugawa C., Coticchia JM. Identification of Helicobacter pylori biofilms in human gastric mucosa. J Gastrointest Surg. 2006. 10:712–7.
17). Lam J., Chan R., Lam K., Costerton JW. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 1980. 28:546–56.
18). Gj⊘dsb⊘l K., Christensen JJ., Karlsmark T., J⊘rgensen B., Klein BM., Krogfelt KA. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006. 3:225–31.
19). Madsen SM., Westh H., Danielsen L., Rosdahl VT. Bacterial colonization and healing of venous leg ulcers. APMIS. 1996. 104:895–9.
20). García-Godoy F., Hicks MJ. Maintaining the integrity of the enamel surface: The role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc. 2008. 139:25S–34S.
21). Trampuz A., Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006. 19:349–56.
22). Zimmerli W., Trampuz A., Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004. 351:1645–54.
23). Combrink KD., Lynch AS. New rifamycins for the treatment of bacterial infections. Expert Opin Ther Patents. 2007. 17:475–85.
24). Gillis RJ., White KG., Choi KH., Wagner VE., Schweizer HP., Iglewski BH. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2005. 49:3858–67.
25). Hancock V., Klemm P. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun. 2007. 75:966–76.
26). Andes D., Nett J., Oschel P., Albrecht R., Marchillo K., Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004. 72:6023–31.
27). Proctor RA., von Eiff C., Kahl BC., Becker K., McNamara P., Herrmann M., Peters G. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006. 4:295–305.
29). Pinkner JS., Remaut H., Buelens F., Miller E., Aberg V., Pemberton N., Hedenström M., Larsson A., Seed P., Waksman G., Hultgren SJ., Almqvist F. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci USA. 2006. 103:17897–902.
30). Cegelski L., Marshall GR., Eldridge GR., Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008. 6:17–27.
31). Hung DT., Shakhnovich EA., Pierson E., Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science. 2005. 310:670–4.
32). Young JA., Collier RJ. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem. 2007. 76:243–65.
33). Bailey L., Gylfe A., Sundin C., Muschiol S., Elofsson M., Nordström P., Henriques-Normark B., Lugert R., Waldenström A., Wolf-Watz H., Bergström S. Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett. 2007. 581:587–95.
34). Hentzer M., Wu H., Andersen JB., Riedel K., Rasmussen TB., Bagge N., Kumar N., Schembri MA., Song Z., Kristoffersen P., Manefield M., Costerton JW., Molin S., Eberl L., Steinberg P., Kjelleberg S., H⊘iby N., Givskov M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003. 22:3803–15.
35). Ulrich LE., Zhulin IB. MiST: a microbial signal transduction database. Nucleic Acids Res. 2007. 35:D386–90.
36). Mayville P., Ji G., Beavis R., Yang H., Goger M., Novick RP., Muir TW. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci USA. 1999. 96:1218–23.
Table 1.
Approach | Mode of action |
---|---|
Pilicides | Inhibits bacterial pilus biogenesis and surface attachment |
RNA III inhibiting peptide (RIP) | Disrupts quorum-sensing pathways in staphylococci |
Acyl-homoserine lactone mimetics | Disrupts quorum-sensing pathways |
Furanones | Disrupts quorum-sensing pathways |
Omigard (omiganan cationic peptide) | Topical gel for prophylaxis settings including CRBSIsa |
Aganocides | Hypochlorous acid based compounds |
Ceragenins | Depolarizes membrane potential; device coatings |
Lysostaphin | Prevents or disrupts staphylococcal biofilms |
Device coatings | Controlled release of antimicrobials from device surfaces |
Hydrogel coatings | Controlled release of silver compounds |
Surface acoustic waves | Disrupts device adhesion and colonization |
Pulsed ultrasound | Enhances local release of antibiotic from cements |
Electric direct current | Prevents or disrupts biofilm colonization |
Intelligent implants | MEMSb-based release of antimicrobial(s) from reservoir |
Gallium compounds | Antimicrobial potentiator via disruption of iron metabolism |
Table 2.
Antimicrobial | Description | Biofilm-related activity |
---|---|---|
Dalbavancin | Lipoglycopeptide | CRBSIa treatment |
Daptomycin | Lipopeptide | Biofilm reduction as lock solution in CVCb model |
Right-sided endocarditis | ||
Poor in vitro activity on adherent staphylococci | ||
Linezolid | Oxazolidinone | Effective in combination with rifampin |
Quinupristin-dalfopristin | Streptogramins | Bone and joint infections |
Biofilm reduction as lock solution in CVC model | ||
Telavancin | Lipoglycopeptide | Biofilm reduction in sorbarod model |
Tigecycline | Glycylcycline | Biofilm reduction in silicone disk model |
Effective in combination with rifampin | ||
CBR-2092 | Rifamycin-quinolone hybrid | Optimized for biofilm activity |