Journal List > J Bacteriol Virol > v.39(3) > 1033929

Jun and Kim: Activation of Innate Immune System During Viral Infection: Role of Pattern-recognition Receptors (PRRs) in Viral Infection

Abstract

Innate immunity and adaptive immunity are two major immune responses against pathogens. Innate immunity is responsible for the immediate immune response to pathogens. Pattern-recognition receptors (PRRs) play an important role in innate immune response. PRRs recognize regular patterns of molecule structure known as pathogen-associated molecular patterns (PAMPs). Among the PRRs, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and DNA-dependent activator of interferon regulatory factors (DAI) display key roles in response to viral infections. This article reviews how viral infections activate PRR-PAMP signal pathways and how viruses evade immune responses elicited by PRR signal pathways.

REFERENCES

1). Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989. ;54 Pt. 1:1–13.
crossref
2). Akira S., Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004. 4:499–511.
crossref
3). Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001. 2:675–80.
crossref
4). Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006. 6:33–43.
crossref
5). Meylan E., Tschopp J., Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006. 442:39–44.
crossref
6). Takeda K., Kaisho T., Akira S. Toll-like receptors. Annu Rev Immunol. 2003. 21:335–76.
crossref
7). Takeuchi O., Akira S. Innate immunity to virus infection. Immunol Rev. 2009. 227:75–86.
crossref
8). Lee MS., Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem. 2007. 76:447–80.
crossref
9). Lee MS., Kim YJ. Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol Cells. 2007. 23:1–10.
10). Kawai T., Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006. 7:131–7.
crossref
11). Aliprantis AO., Yang RB., Mark MR., Suggett S., Devaux B., Radolf JD., Klimpel GR., Godowski P., Zychlinsky A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science. 1999. 285:736–9.
crossref
12). Brightbill HD., Libraty DH., Krutzik SR., Yang RB., Belisle JT., Bleharski JR., Maitland M., Norgard MV., Plevy SE., Smale ST., Brennan PJ., Bloom BR., Godowski PJ., Modlin RL. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999. 285:732–6.
crossref
13). Hirschfeld M., Kirschning CJ., Schwandner R., Wesche H., Weis JH., Wooten RM., Weis JJ. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol. 1999. 163:2382–6.
14). Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopoly-saccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999. 162:3749–52.
15). Lien E., Sellati TJ., Yoshimura A., Flo TH., Rawadi G., Finberg RW., Carroll JD., Espevik T., Ingalls RR., Radolf JD., Golenbock DT. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem. 1999. 274:33419–25.
crossref
16). Poltorak A., He X., Smirnova I., Liu MY., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998. 282:2085–8.
17). Schwandner R., Dziarski R., Wesche H., Rothe M., Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999. 274:17406–9.
crossref
18). Takeuchi O., Kaufmann A., Grote K., Kawai T., Hoshino K., Morr M., Muhlradt PF., Akira S. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol. 2000. 164:554–7.
19). Yoshimura A., Lien E., Ingalls RR., Tuomanen E., Dziarski R., Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol. 1999. 163:1–5.
20). Uematsu S., Akira S. Toll-like receptors and Type I interferons. J Biol Chem. 2007. 282:15319–23.
crossref
21). Katze MG., He Y., Gale M Jr. Viruses and interferon: a fight for supremacy. Nat Rev Immunol. 2002. 2:675–87.
crossref
22). Sadler AJ., Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008. 8:559–68.
crossref
23). Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007. 449:819–26.
crossref
24). Hashimoto C., Hudson KL., Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988. 52:269–79.
25). Lemaitre B., Nicolas E., Michaut L., Reichhart JM., Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996. 86:973–83.
26). Medzhitov R., Preston-Hurlburt P., Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997. 388:394–7.
27). Rock FL., Hardiman G., Timans JC., Kastelein RA., Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA. 1998. 95:588–93.
28). Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006. 124:783–801.
crossref
29). Mogensen TH., Paludan SR. Reading the viral signature by Toll-like receptors and other pattern recognition receptors. J Mol Med. 2005. 83:180–92.
crossref
30). Barton GM. Viral recognition by Toll-like receptors. Semin Immunol. 2007. 19:33–40.
crossref
31). Kim HM., Park BS., Kim JI., Kim SE., Lee J., Oh SC., Enkhbayar P., Matsushima N., Lee H., Yoo OJ., Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007. 130:906–17.
crossref
32). Jin MS., Kim SE., Heo JY., Lee ME., Kim HM., Paik SG., Lee H., Lee JO. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007. 130:1071–82.
33). Matsumoto M., Funami K., Tanabe M., Oshiumi H., Shingai M., Seto Y., Yamamoto A., Seya T. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol. 2003. 171:3154–62.
crossref
34). Alexopoulou L., Holt AC., Medzhitov R., Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001. 413:732–8.
35). Edelmann KH., Richardson-Burns S., Alexopoulou L., Tyler KL., Flavell RA., Oldstone MB. Does Toll-like receptor 3 play a biological role in virus infections? Virology. 2004. 322:231–8.
crossref
36). Diebold SS., Kaisho T., Hemmi H., Akira S., Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004. 303:1529–31.
crossref
37). Lund JM., Alexopoulou L., Sato A., Karow M., Adams NC., Gale NW., Iwasaki A., Flavell RA. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA. 2004. 101:5598–603.
crossref
38). Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004. 303:1526–9.
crossref
39). Krieg AM., Yi AK., Matson S., Waldschmidt TJ., Bishop GA., Teasdale R., Koretzky GA., Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995. 374:546–9.
crossref
40). Bauer S., Kirschning CJ., Hacker H., Redecke V., Hausmann S., Akira S., Wagner H., Lipford GB. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA. 2001. 98:9237–42.
crossref
41). Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000. 408:740–5.
crossref
42). Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002. 20:709–60.
crossref
43). Hacker H., Vabulas RM., Takeuchi O., Hoshino K., Akira S., Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000. 192:595–600.
44). Schnare M., Holt AC., Takeda K., Akira S., Medzhitov R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol. 2000. 10:1139–42.
crossref
45). Krug A., Luker GD., Barchet W., Leib DA., Akira S., Colonna M. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood. 2004. 103:1433–7.
crossref
46). Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 2003. 198:513–20.
crossref
47). Delale T., Paquin A., Asselin-Paturel C., Dalod M., Brizard G., Bates EE., Kastner P., Chan S., Akira S., Vicari A., Biron CA., Trinchieri G., Briere F. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol. 2005. 175:6723–32.
48). Krug A., French AR., Barchet W., Fischer JA., Dzionek A., Pingel JT., Orihuela MM., Akira S., Yokoyama WM., Colonna M. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity. 2004. 21:107–19.
crossref
49). Randall RE., Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008. 89:1–47.
crossref
50). Negishi H., Fujita Y., Yanai H., Sakaguchi S., Ouyang X., Shinohara M., Takayanagi H., Ohba Y., Taniguchi T., Honda K. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci USA. 2006. 103:15136–41.
51). Levy DE., Marie IJ. RIGging an antiviral defense–it's in the CARDs. Nat Immunol. 2004. 5:699–701.
crossref
52). Takaoka A., Taniguchi T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev. 2008. 60:847–57.
crossref
53). Hemmi H., Takeuchi O., Sato S., Yamamoto M., Kaisho T., Sanjo H., Kawai T., Hoshino K., Takeda K., Akira S. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med. 2004. 199:1641–50.
54). Lopez CB., Moltedo B., Alexopoulou L., Bonifaz L., Flavell RA., Moran TM. TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses. J Immunol. 2004. 173:6882–9.
crossref
55). Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004. 5:730–7.
crossref
56). Yoneyama M., Fujita T. RIG-I family RNA helicases: cytoplasmic sensor for antiviral innate immunity. Cytokine Growth Factor Rev. 2007. 18:545–51.
crossref
57). Yoneyama M., Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem. 2007. 282:15315–8.
crossref
58). Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo YM., Gale M Jr., Akira S., Yonehara S., Kato A., Fujita T. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 2005. 175:2851–8.
crossref
59). Takaoka A., Wang Z., Choi MK., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T., Honda K., Ohba Y., Taniguchi T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007. 448:501–5.
crossref
60). Sumpter R Jr., Loo YM., Foy E., Li K., Yoneyama M., Fujita T., Lemon SM., Gale M Jr. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol. 2005. 79:2689–99.
crossref
61). Cheng G., Zhong J., Chung J., Chisari FV. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Sci USA. 2007. 104:9035–40.
crossref
62). Pichlmair A., Schulz O., Tan CP., Naslund TI., Liljestrom P., Weber F., Reis e Sousa C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006. 314:997–1001.
crossref
63). Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii KJ., Yamaguchi O., Otsu K., Tsujimura T., Koh CS., Reis e Sousa C., Matsuura Y., Fujita T., Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006. 441:101–5.
crossref
64). Kato H., Sato S., Yoneyama M., Yamamoto M., Uematsu S., Matsui K., Tsujimura T., Takeda K., Fujita T., Takeuchi O., Akira S. Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005. 23:19–28.
crossref
65). Loo YM., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill MA., Garcia-Sastre A., Katze MG., Gale M Jr. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol. 2008. 82:335–45.
crossref
66). Takeuchi O., Akira S. MDA5/RIG-I and virus recognition. Curr Opin Immunol. 2008. 20:17–22.
crossref
67). Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii KJ., Takeuchi O., Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005. 6:981–8.
crossref
68). Meylan E., Curran J., Hofmann K., Moradpour D., Binder M., Bartenschlager R., Tschopp J. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005. 437:1167–72.
crossref
69). Seth RB., Sun L., Ea CK., Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005. 122:669–82.
70). Xu LG., Wang YY., Han KJ., Li LY., Zhai Z., Shu HB. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell. 2005. 19:727–40.
71). Kumar H., Kawai T., Kato H., Sato S., Takahashi K., Coban C., Yamamoto M., Uematsu S., Ishii KJ., Takeuchi O., Akira S. Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med. 2006. 203:1795–803.
crossref
72). Sun Q., Sun L., Liu HH., Chen X., Seth RB., Forman J., Chen ZJ. The specific and essential role of MAVS in antiviral innate immune responses. Immunity. 2006. 24:633–42.
crossref
73). Yoneyama M., Fujita T. Cytoplasmic double-stranded DNA sensor. Nat Immunol. 2007. 8:907–8.
crossref
74). Ha SC., Kim D., Hwang HY., Rich A., Kim YG., Kim KK. The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA reveals an unusual binding mode to Z-DNA. Proc Natl Acad Sci USA. 2008. 105:20671–6.
crossref
75). Ramakrishnan V. Ribosome structure and the mechanism of translation. Cell. 2002. 108:557–72.
crossref
76). Hornung V., Ellegast J., Kim S., Brzozka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann KK., Schlee M., Endres S., Hartmann G. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006. 314:994–7.
crossref
77). Myong S., Cui S., Cornish PV., Kirchhofer A., Gack MU., Jung JU., Hopfner KP., Ha T. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science. 2009. 323:1070–4.
crossref
78). Cui S., Eisenacher K., Kirchhofer A., Brzozka K., Lammens A., Lammens K., Fujita T., Conzelmann KK., Krug A., Hopfner KP. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell. 2008. 29:169–79.
crossref
79). Saito T., Hirai R., Loo YM., Owen D., Johnson CL., Sinha SC., Akira S., Fujita T., Gale M Jr. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA. 2007. 104:582–7.
crossref
80). Malathi K., Dong B., Gale M Jr., Silverman RH. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature. 2007. 448:816–9.
crossref
81). Barton GM., Kagan JC., Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol. 2006. 7:49–56.
crossref
82). Marshak-Rothstein A., Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol. 2007. 25:419–41.
crossref
83). Johansson C., Wetzel JD., He J., Mikacenic C., Dermody TS., Kelsall BL. Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. J Exp Med. 2007. 204:1349–58.
crossref
84). Gowen BB., Hoopes JD., Wong MH., Jung KH., Isakson KC., Alexopoulou L., Flavell RA., Sidwell RW. TLR3 deletion limits mortality and disease severity due to Phlebovirus infection. J Immunol. 2006. 177:6301–7.
crossref
85). Wang T., Town T., Alexopoulou L., Anderson JF., Fikrig E., Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004. 10:1366–73.
crossref
86). Tabeta K., Georgel P., Janssen E., Du X., Hoebe K., Crozat K., Mudd S., Shamel L., Sovath S., Goode J., Alexopoulou L., Flavell RA., Beutler B. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA. 2004. 101:3516–21.
crossref
87). Zhang SY., Jouanguy E., Ugolini S., Smahi A., Elain G., Romero P., Segal D., Sancho-Shimizu V., Lorenzo L., Puel A., Picard C., Chapgier A., Plancoulaine S., Titeux M., Cognet C., von Bernuth H., Ku CL., Casrouge A., Zhang XX., Barreiro L., Leonard J., Hamilton C., Lebon P., Heron B., Vallee L., Quintana-Murci L., Hovnanian A., Rozenberg F., Vivier E., Geissmann F., Tardieu M., Abel L., Casanova JL. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007. 317:1522–7.
crossref
88). Bochud PY., Magaret AS., Koelle DM., Aderem A., Wald A. Polymorphisms in TLR2 are associated with increased viral shedding and lesional rate in patients with genital herpes simplex virus type 2 infection. J Infect Dis. 2007. 196:505–9.
89). Finlay BB., McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006. 124:767–82.
crossref
90). Pichlmair A., Reis e Sousa C. Innate recognition of viruses. Immunity. 2007. 27:370–83.
crossref
91). Roy CR., Mocarski ES. Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol. 2007. 8:1179–87.
crossref
92). Diebold SS., Montoya M., Unger H., Alexopoulou L., Roy P., Haswell LE., Al-Shamkhani A., Flavell R., Borrow P., C Reis e Sousa C. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature. 2003. 424:324–8.
crossref
93). Andrejeva J., Childs KS., Young DF., Carlos TS., Stock N., Goodbourn S., Randall RE. The V proteins of paramyxo-viruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci USA. 2004. 101:17264–9.
94). Stack J., Haga IR., Schroder M., Bartlett NW., Maloney G., Reading PC., Fitzgerald KA., Smith GL., Bowie AG. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med. 2005. 201:1007–18.
crossref
95). Li XD., Sun L., Seth RB., Pineda G., Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci USA. 2005. 102:17717–22.
crossref
96). Loo YM., Owen DM., Li K., Erickson AK., Johnson CL., Fish PM., Carney DS., Wang T., Ishida H., Yoneyama M., Fujita T., Saito T., Lee WM., Hagedorn CH., Lau DT., Weinman SA., Lemon SM., Gale M Jr. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci USA. 2006. 103:6001–6.
crossref
97). Fensterl V., Grotheer D., Berk I., Schlemminger S., Vallbracht A., Dotzauer A. Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. J Virol. 2005. 79:10968–77.
crossref
98). Yang Y., Liang Y., Qu L., Chen Z., Yi M., Li K., Lemon SM. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci USA. 2007. 104:7253–8.
crossref
99). Krieg AM., Wu T., Weeratna R., Efler SM., Love-Homan L., Yang L., Yi AK., Short D., Davis HL. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA. 1998. 95:12631–6.
crossref
100). Palm NW., Medzhitov R. Not so fast: adaptive suppression of innate immunity. Nat Med. 2007. 13:1142–4.
crossref
101). Kim KD., Zhao J., Auh S., Yang X., Du P., Tang H., Fu YX. Adaptive immune cells temper initial innate responses. Nat Med. 2007. 13:1248–52.
crossref

Figure 1.
Signaling pathways through PRRs in response to viral infections
jbv-39-145f1.tif
Table 1.
Recognition of viruses by PRRs
PRR Pathogen References
  EMCV 35
  Semliki Forest Virus 35
TLR3 MCMV 86
  Reovirus 34
  West Nile Virus 82, 85
  Influenza Virus 36, 37
TLR7 VSV 37
  Sendai Virus 36, 37
  MCMV 47, 48
TLR9 HSV-1 45
  HSV-2 46
  Influenza Virus 65, 66
  Hepatitis A virus 66
  Hepatitis C virus 60
  Japanese Encephalitis Virus 65, 66
  Dengue Virus 65, 66
  New Castle Virus 64
RIG-I Sendai Virus 63, 64
  Vesicular Stomatitis Virus 63, 64
  West Nile Virus 65, 66
  Rabies Virus 65, 66
  Respiratory Syncytial Virus 65, 66
  Ebola Virus 65, 66
  Measles Virus 65, 66
  West Nile Virus 65, 66
  EMCV 63, 64
  Tdeiler's Virus 63, 64
MDA5 Mengo Virus 63, 64
  Paramyxovirus 90
  Picornavirus 65, 66
  Dengue Virus 65, 66
Table 2.
Anti-immune strategies of viruses
Pathogen Pathogen component Target site Effect References
Paramyxovirus (Simian Virus 5) V MDA5 Bind to MDA5 and inhibit its activation of tde IFN-β promoter 93
HCV NS3/4A IPS-1 Cleave IPS-1 from mitochondria 68, 95, 96
Vaccinia Virus A46R MyD88 & TRIF A46R contains a TIR domain and target tde MyD88/TRIF 94
Influenza Virus NS1 RIG-I Inhibit RIG-I binding to ssRNA 92
Hepatitis A Virus 3ABC RIG-I Cleave IPS-1 97, 98
Adenovirus Sequence motif   Clustering of CpG motif 99
TOOLS
Similar articles