Journal List > J Bacteriol Virol > v.37(4) > 1033879

Park, Lee, Song, Jun, Joo, Youn, Seo, Kang, Baik, Lee, Cho, and Rhee: Proteomic Analysis of Helicobacter pylori Whole Cell Proteins using the Narrow Range IPG Strips

Abstract

It has been reported that most of Helicobacter pylori proteome components appear so crowded in the region of pH 4.5∼8.0 that a lot of them were inseparable in 2-DE using the broad range IPG strip. Therefore, inseparable protein spots in 2-DE profiles have to be apart from each other for improving the protein identification. Here, we attempt to examine the usability of the narrow range IPG strips for separating close spots in the broad range IPG strip at proteomic analysis of H. pylori. The whole cell proteins of H. pylori strain 26695 were separated by narrow range IPG strips (pI 3.9∼5.1, 4.7∼5.9, 5.5∼6.7, and 6.3∼8.3, respectively), followed by SDS-PAGE, and visualized by silver staining, showing that the distances between spots were widened and the total number of detectable spots was increased. Resolved protein spots were identified by the peptide fingerprinting using MALDI-TOF-MS. As a result, 87 expressed proteins were identified by the peptide fingerprinting. Of them, 23 proteins, including hydrogenase expression/formation protein, purine-binding chemotaxis protein, and ribosomal protein S6, have not been reported in the previous proteome studies of H. pylori. Thus, these results demonstrate that the high complexity proteome components could be effectively separated using the narrow range IPG strips, which might be helpful to strengthen the contents of the master protein map of the H. pylori reference strain.

References

1). Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 14:176–180. 1999.
2). Backert S, Kwok T, Schmid M, Selbach M, Moese S, Peek RM Jr, Konig W, Meyer TF, Jungblut PR. Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 5:1331–1345. 2005.
3). Baik SC, Kim JB, Cho MJ, Kim YC, Park CG, Rhou HH, Choi HJ, Rhee KH. Prevalence of Helicobacter pylori infection among normal Korean adults. J Korean Soc Microbiol. 6:455–462. 1990.
4). Baik SC, Kim KM, Song SM, Kim DS, Jun JS, Lee SG, Song JY, Park JU, Kang HL, Lee WK, Cho MJ, Youn HS, Ko GH, Rhee KH. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol. 186:949–955. 2004.
5). Baik SC, Yoon HS, Chung MH, Lee WK, Cho MJ, Ko KH, Park CK, Kasai H, Rhee KH. Increased oxidative DNA damage Helicobacter pylori-infected human gastric mucosa. Cancer Res. 56:1279–1282. 1996.
6). Banatvala NK, Mayo K, Megraud F, Jennings R, Deeks JJ, Feldman RA. The cohort effect and Helicobacter pylori. J Infect Dis. 168:219–221. 1993.
7). Blaser MJ. Gastric Campylobacter-like organisms gastritis and peptic ulcer disease. Gastroenterology. 97:371–383. 1987.
8). Blaser MJ. Helicobacter pylori and gastric diseases. Br Med J. 316:1507–1510. 1998.
9). Cash P. Proteomics in medical microbiology. Electrophoresis. 21:1187–1201. 2000.
crossref
10). Cho MJ, Jeon BS, Park JW, Jung TS, Song JY, Lee WK, Choi YJ, Choi SH, Park SG, Park JU, Choe MY, Jung SA, Byun EY, Baik SC, Youn HS, Ko GH, Lim D, Rhee KH. Identifying the major proteome components of Helicobacter pylori strain 26695. Electrophoresis. 23:1161–1173. 2002.
11). Dunn BE, Cohen H, Blaser MJ. Helicobacter pylori. Clin Microbiol Rev. 10:720–741. 1997.
12). Fischer W, Haas R. The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity. J Bacteriol. 186:777–784. 2004.
13). Forman D, Newell DG, Fullerton F, Yarnel JW, Stacey AR, Wald N, Sitas F. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. Br Med J. 302:1302–1305. 1991.
14). Gharahdaghi F, Weinberg CR, Maagher DA, Imai BS, Mische SM. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis. 20:601–605. 1999.
crossref
15). Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21:1037–1053. 2000.
crossref
16). Görg A, Obermaier C, Boguth G, Weiss W. Recent developments in two-dimensional gel electrophoresis with immobilized pH gradients: wide pH gradients up to pH 12, longer separation distances and simplified procedures. Electrophoresis. 20:712–717. 1999.
crossref
17). Humphery-Smith I, Cordwell SJ, Blackstock WP. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis. 18:1217–1242. 1997.
crossref
18). Jungblut PR, Bumann D, Haas G, Zimmy-Arndt U, Holland P, Lamer S, Siejak F, Aebischer A, Meyer TF. Comparative proteome analysis of Helicobacter pylori. Mol Microbiol. 36:710–725. 2000.
19). Kim H, Wu CA, Kim DY, Han YH, Ha SC, Kim CS, Suh SW, Kim KK. Crystallization and preliminary X-ray crystallographic study of UDP-glucose pyrophosphorylase (UGPase) from Helicobacter pylori. Acta Crystallogr D Biol Crystallogr. 60:1447–1449. 2004.
20). Lee HW, Choe YH, Kim DK, Jung SY, Lee NG. Proteomic analysis of a ferric uptake regulator mutant of Helicobacter pylori: regulation of Helicobacter pylori gene expression by ferric uptake regulator and iron. Proteomics. 4:2014–2027. 2004.
21). Lock RA, Cordwell SJ, Coombs GW, Walsh BJ, Forbes GM. Proteome analysis of Helicobacter pylori: major proteins of type strain NCTC11637. Pathol. 33:365–374. 2001.
22). Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 16:1311–115. 1984.
crossref
23). McAtee CP, Hoffman PS, Berg DE. Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques. Proteomics. 1:516–521. 2001.
24). Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, Blaser J. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med. 325:1132–1136. 1991.
25). O'Connell KL, Stults JT. Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis. 18:349–359. 1997.
26). Oh JD, Kling-Bäckhed H, Giannakis M, Xu J, Fulton RS, Fulton LA, Cordum HS, Wang C, Elliott G, Edwards J, Mardis ER, Engstrand LG, Gordon JI. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A. 103:9999–10004. 2006.
27). Parsonnet J, Hansen S, Rodriguez L, Gelb AB, Warnke RA, Jellum E, Orentreich N, Vogelman JH, Friedman GD. Helicobacter pylori infection and lymphoma. N Engl J Med. 330:1132–1136. 1994.
28). Peterson W. Helicobacter pylori and peptic ulcer disease. N Engl J Med. 324:1043–1048. 1991.
29). Proteome 2D-PAGE database. http://www.mpiib-berlin.mpg.de/2D-PAGE/.
30). Quadroni M, James P. Proteomics and automation. Electrophoresis. 20:664–677. 1999.
crossref
31). Rhee KH, Yoon HS, Baik SC, Lee WK, Cho MJ, Choi HJ, Maeng KY, Ko KW. Prevalence of Helicobacter pylori infection among normal Koreans. J Korean Soc Microbiol. 6:475–490. 1990.
32). Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 7:539–547. 1997.
33). Uwins C, Deitrich C, Argo E, Stewart E, Davidson I, Cash P. Growth-induced changes in the proteome of Helicobacter pylori. Electrophoresis. 27:1136–1146. 2006.
34). Wildgruber R, Harder A, Obermaier C, Boguth G, Weiss W, Fey SJ, Larsen PM, Görg A. Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis. 21:2610–2616. 2000.
35). Williams KL. Genomes and proteomes: towards a multidimensional view of biology. Electrophoresis. 20:678–688. 1999.
crossref

Figure 1.
Two-dimensional-gel electrophoresis of whole cell proteins from H. pylori strain 26695. Whole cell proteins solution was separated on a narrow range IPG strips, followed by 12.5% SDS-PAGE, and visualized by silver staining. The original gel size was 20×18×0.15 cm. (A) pH 3.9∼5.1; (B) pH 4.7∼5.9; (C) pH 5.5∼6.7; (D) pH 6.3∼8.3.
jbv-37-203f1.tif
Figure 2.
The composite profile of the whole cell proteins of H. pylori strain 26695 resolved in the 2-DE using the narrow pH range IPG strips. The whole cell proteins of H. pylori strain 26695 was subjected to 2-DE using IPG strips of 3.9∼5.1, 4.7∼5.9, 5.5∼6.7, and 6.3∼8.3 ranges, the gels were visualized with silver staining. The 4 kinds of images were taken up and analyzed with PDQUEST software, and excluded with the overlapping zones of each right and left termini, and then combined by PHOTOSHOP software to generate the composite one ranged from pI 3.9 to pI 8.3. The marked protein spots have been identified and listed in Table 1.
jbv-37-203f2.tif
Figure 3.
Blow-up images of two different regions in 2-DE gels of H. pylori whole cell proteins resolved by broad (pH 3.0∼10.0), intermediate (pH 5.0∼8.0), narrow (pH 4.7∼5.9) pH strips. Here, the narrower is the pH range of the strip, the higher resolution does the spots profile show in which the resolution and the number of spots are improved. HtpG spot appears in the gel of narrow pH strips but did not in otherwise.
jbv-37-203f3.tif
Table 1.
Protein identification of spots from narrow range 2-DE gels the whole cell proteins of H. pylori strain 26695
TIGR locus§ MW (Da) pI Annotation
HP 0010 58263.91 5.4772 Chaperone and heat shock protein (groEL)
HP 0011 12990.87 6.5917 Co-chaperone (groES)
HP 0014 31681.02 5.7841 Hypothetical protein
HP 0026 48350.02 8.0209 Citrate synthase (gltA)
HP 0027 47531.05 7.9527 Isocitrate dehydrogenase (icd)
HP 0047 36405.28 4.8329 Hydrogenase expression/formation protein (hypE)
HP 0059 32723.51 4.8431 Hypothetical protein
HP 0060 93128.96 4.8450 Hypothetical protein
HP 0061 21764.88 5.9064 Hypothetical protein
HP 0067 29722.06 6.1629 Urease accessory protein (ureH)
HP 0068 21955.25 4.7602 Urease accessory protein (ureG)
HP 0069 28618.77 7.6498 Urease accessory protein (ureF)
HP 0072 61683.52 5.9110 Urease beta subunit (ureB)
HP 0073 26539.49 8.9593 Urease, alpha subunit (ureA)
HP 0096 34796.18 7.0468 Phosphoglycerate dehydrogenase
HP 0109 67051.91 4.7568 Chaperone and heat shock protein70 (dnaK)
HP 0137 23610.48 7.6666 Hypothetical protein
HP 0153 37686.28 5.5065 Recombinase (recA)
HP 0166 25855.46 5.0781 Response regulator (ompR)
HP 0176 33772.69 6.2517 Fructose-bisphosphate aldolase (tsr)
HP 0191 27651.76 5.1972 Fumarate reductase, iron-sulfur subunit (frdB)
HP 0192 80121.10 7.3217 Fumarate reductase, flavoprotein subunit (frdA)
HP 0197 42362.06 6.4292 S-adenosylmethionine synthetase 2 (metX)
HP 0201 36483.11 6.5193 Fatty acid/phospholipid synthesis protein (plsX)
HP 0210 71274.03 5.2608 Chaperone and heat shock protein C62.5 (htpG)
HP 0220 42403.38 6.1542 Synthesis of [Fe-S] cluster (nifS)
HP 0243 16933.34 5.8309 Neutrophil activating protein (napA) (bacterioferritin)
HP 0264 96683.36 6.2660 ATP-dependent protease binding subunit (clpB)
HP 0389 24617.63 6.1683 Superoxide dismutase (sodB)
HP 0391 18966.68 5.0808 Purine-binding chemotaxis protein
HP 0399 62826.43 6.7727 Ribosomal protein S1 (rps1)
HP 0452 60506.79 5.9621 Conserved hypothetical protein
HP 0480 66676.31 5.0937 GTP-binding protein, fusA-homolog (yihK)
HP 0512 54513.58 6.0379 Glutamine synthetase (glnA)
HP 0557 34881.13 5.3110 Acetyl-coenzyme A carboxylase (accA)
HP 0569 40574.45 5.5302 GTP-binding protein (gtp1)
HP 0570 54433.07 7.1054 Aminopeptidase a/i (pepA)
HP 0589 41508.81 6.3623 Ferredoxin oxidoreductase, alpha subunit
HP 0617 65601.53 6.8834 Aspartyl-tRNA synthetase (aspS)
HP 0618 21243.21 5.0039 Adenylate kinase (adk)
HP 0620 19271.89 4.8028 Inorganic pyrophosphatase (ppa)
HP 0646 30975.69 6.5192 UDP-glucose pyrophosphorylase (galU)
HP 0649 51980.86 6.8341 Aspartate ammonia-lyase (aspA)
HP 0658 53288.14 6.0094 Glutamyl-tRNA(Gln) amidotransferase subunit B (gatB)
HP 0691 25362.24 5.8082 3-oxoadipate coA-transferase subunit A (yxjD)
HP 0692 22262.85 5.3450 3-oxoadipate coA-transferase subunit B (yxjE)
HP 0695 78532.79 6.9435 Hydantoin utilization protein A (hyuA)
HP 0703 43414.34 6.7535 Response regulator
HP 0799 19676.86 5.3363 Molybdopterin biosynthesis protein (mog)
HP 0829 51801.80 8.2155 Inosine-5′-monophosphate dehydrogenase (guaB)
HP 0852 35776.74 6.6806 Hypothetical protein
HP 0857 21102.26 6.3967 Phosphoheptose isomerase (gmhA)
HP 0859 37412.66 7.3588 ADP-L-glycero-D-mannoheptose-6-epimerase (rfaD)
HP 0900 27310.33 5.2449 Hydrogenase expression/formation protein (hypB)
HP 0902 11029.96 6.6745 Hypothetical protein
HP 0975 10656.15 4.7389 Glu-tRNA(Gln) amidotransferase, subunit C
HP 0978 54492.59 6.6324 Cell division protein (ftsA) protein
HP 0979 40954.34 5.1659 Cell division protein (ftsZ)
HP 1038 18483.25 4.9294 3-dehydroquinase type II (aroQ)
HP 1043 25468.16 4.9740 Response regulator
HP 1059 37360.31 6.0818 Holliday junction DNA helicase (ruvB)
HP 1079 42919.70 6.3237 Hypothetical protein
HP 1102 25727.47 7.3447 Glucose-6-phosphate 1-dehydrogenase (devB)
HP 1104 38645.51 7.4067 Cinnamyl-alcohol dehydrogenase ELI3–2 (cad)
HP 1110 44743.62 5.8122 Pyruvate ferredoxin oxidoreductase, alpha subunit
HP 1114 75916.20 6.9096 Excinuclease ABC subunit B (uvrB)
HP 1132 51478.08 5.0767 ATP synthase F1, subunit beta (atpD)
HP 1134 55143.11 5.0512 ATP synthase F1, subunit alpha (atpA)
HP 1135 20368.81 8.4730 ATP synthase F1, subunit delta (atpH)
HP 1161 17492.37 4.2040 Flavodoxin (fldA)
HP 1164 35985.98 6.8739 Thioredoxin reductase (trxB)
HP 1195 77020.88 5.0111 Translation elongation factor EF-G (fusA)
HP 1199 13313.38 4.9125 Ribosomal protein L7/L12 (rpl7/l12)
HP 1203 20261.24 7.8735 Transcription termination factor NusG (nusG)
HP 1205 43647.70 4.9302 Translation elongation factor EF-Tu (tufB)
HP 1226 40196.14 6.5108 Oxygen-independent coproporphyrinogen III oxidase (hemN)
HP 1237 41635.41 7.1579 Carbamoyl-phosphate synthetase (pyrAa)
HP 1246 16971.34 7.4983 Ribosomal protein S6 (rps6)
HP 1293 38499.11 4.6887 DNA-directed RNA polymerase, alpha subunit (rpoA)
HP 1299 27576.93 6.4208 Methionine amino peptidase (map)
HP 1345 44771.64 6.7477 Phosphoglycerate kinase
HP 1374 50353.20 6.4377 ATP-dependent protease ATPase subunit (clpX)
HP 1507 43904.36 6.5698 Conserved hypothetical ATP-binding protein
HP 1514 44649.63 5.5915 Transcription termination factor NusA (nusA)
HP 1517 149715.58 7.5020 Type IIS restriction enzyme R and M protein (ECO57IR)
HP 1563 22235.57 6.2482 Alkyl hydroperoxide reductase (tsaA)
HP 1582 29720.44 8.0532 Pyridoxal phosphate biosynthetic protein J (pdxJ)

Not previously identified in references

§ Tigr loci from figure 2.,

TOOLS
Similar articles