Abstract
Background
Anti-IgE mAb which binds circulating but not receptor-bound IgE has been shown to be effective in treatment for asthma and other allergic diseases. However, the mechanisms by which anti-IgE mAb influences the pathophysiological responses are remained to be illustrated. This study was undertaken to examine the therapeutic efficacy of non-anaphylactogenic anti-mouse IgE mAb using murine models of IgE-induced systemic fatal anaphylaxis.
Methods
Active systemic anaphylaxis was induced by either penicillin V (Pen V) or OVA and passive systemic anaphylaxis was induced by either anaphylactogenic anti-mouse IgE or a mixture of anti-chicken gamma globulin (CGG) IgG1 mAb and CGG. The binding of the Fc portion of anti-IgE to CHO-stable cell line expressing mouse FcγRIIb was examined using flow cytometry. Fc fragments of anti-IgE mAb were prepared using papain digestion. The expression of phosphatases in lungs were assessed by Western blotting and immunohistochemistry.
Results
Anti-IgE mAb prevented IgE- and IgG-induced active and passive systemic fatal reactions. In both types of anaphylaxis, anti-IgE mAb suppressed antigen-specific IgE responses, but not those of IgG. Anti-IgE mAb neither prevented anaphylaxis nor suppressed the IgE response in FcγRIIb-deficient mice. The Fc portion of anti-IgE mAb was bound to murine FcγRIIb gene-transfected CHO cells and inhibited systemic anaphylaxis. Anti-IgE mAb blocked the anaphylaxis-induced downregulation of FcγRIIb-associated phosphatases such as src homology 2 domain-containing inositol 5-phosphatase (SHIP) and phosphatase and tensin homologue deleted on chromosome ten (PTEN).