Journal List > Immune Netw > v.5(4) > 1033716

Yang, Song, Jung, Lee, Kim, Lee, Shin, Oh, Kwon, Kim, Park, Paik, and Jo: The Phospholipase-Protein Kinase C-MEK-ERK Pathway is Essential in Mycobacteria-induced CCL3 and CCL4 Expression in Human Monocytes

Abstract

Background

Little information is available on the identification and characterization of the upstream regulators of the signal transduction cascades for Mycobacterium tuberculosis (M. tbc)-induced ERK 1/2 activation and chemokine expression. We investigated the signaling mechanisms involved in expression of CCL3/MIP-1 and CCL4/MIP-1 in human primary monocytes infected with M. tbc.

Methods

MAP kinase phosphorylation was determined using western blot analysis with specific primary antibodies (ERK 1/2, and phospho-ERK1/2), and the upstream signaling pathways were further investigated using specific inhibitors.

Results

An avirulent strain, M. tbc H37Ra, induced greater and more sustained ERK 1/2 phosphorylation, and higher CCL3 and CCL4 production, than did M. tbc H37Rv. Specific inhibitors for mitogen-activated protein kinase (MAPK) kinase (MEK; U0126 and PD98059) significantly inhibited the expression of CCL3 and CCL4 in human monocytes. Mycobacteria-mediated expression of CCL3 and CCL4 was not inhibited by the Ras inhibitor manumycin A or the Raf-1 inhibitor GW 5074. On the other hand, phospholipase C (PLC) inhibitor (U73122) and protein kinase C (PKC)-specific inhibitors (Gö6976 and Ro31-8220) significantly reduced M. tbc-induced activation of ERK 1/2 and chemokine synthesis.

Conclusion

These results are the first to demonstrate that the PLC-PKC-MEK-ERK, not the Ras-Raf-MEK-ERK, pathway is the major signaling pathway inducing M. tbc-mediated CCL3 and CCL4 expression in human primary monocytes.

TOOLS
Similar articles