Abstract
Background
Vitamin C is an essential nutrient, taken as a daily supplement by many people. Recently, high-dose vitamin C is considered as a therapeutic regimen in some clinical situations. Until now, few studies have been done with the effects of high-dose vitamin C on the immune response.
Methods
In this experiment, the effects of high-dose vitamin C on cell-mediated immune response in immunologically competent mice were evaluated. After intraperitoneal injection of 2.5, 5, or 10 mg/day of vitamin C for 10 days, delayed type hypersensitivity (DTH) was provoked against DNFB in the pinnae as a model for cell-mediated immune response. Severity of DTH reaction was evaluated as the thickness of pinnae, and the vitamin C levels were measured in the serum, liver, kidney, lung, pinnae, and splenocytes.
Methods
After challenge, the thickness increased at its peak on the 2nd day in all groups. On the first day, the pinnae were thicker in the injected groups than in the control. On the contrary, the increment of the pinnae thickness was attenuated and the number of cells infiltrated in the site of DTH decreased proportionately to the amount of vitamin C administered from the second day on. With vitamin C exogenously given, the serum level peaked at 30 min after injection, and returned abruptly to its basal level without accumulation. However, it accumulated in the liver, kidney, and especially in the pinnae inflamed and splenopcytes, proportionately to the amount administered.
Conclusion
Based on these results, it is suggested that, in one hand, exogenously administered high-dose vitamin C accumulated in the splenocytes and presumably changed the function of them resulting in the augmented cell-mediated immune response, as was revealed in the first day of DTH reaction. On the other hand, it seems likely that the vitamin C also showed anti-inflammatory effects.