1. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010; 28:445–489.
2. Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci. 1975; 53:27–42.
3. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013; 13:227–242.
4. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003; 3:939–951.
5. Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A. 2008; 73:975–983.
6. Derhovanessian E, Maier AB, Hahnel K, Beck R, de Craen AJ, Slagboom EP, Westendorp RG, Pawelec G. Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4
+ and CD8
+ T-cells in humans. J Gen Virol. 2011; 92:2746–2756.
7. Weng NP, Akbar AN, Goronzy J. CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009; 30:306–312.
8. Vallejo AN, Bryl E, Klarskov K, Naylor S, Weyand CM, Goronzy JJ. Molecular basis for the loss of CD28 expression in senescent T cells. J Biol Chem. 2002; 277:46940–46949.
9. Czesnikiewicz-Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, Ouslander JG, Weyand CM, Goronzy JJ. T cell subset-specific susceptibility to aging. Clin Immunol. 2008; 127:107–118.
10. Yu HT, Park S, Shin EC, Lee WW. T cell senescence and cardiovascular diseases. Clin Exp Med. 2016; 16:257–263.
11. Broux B, Markovic-Plese S, Stinissen P, Hellings N. Pathogenic features of CD4+. Trends Mol Med. 2012; 18:446–453.
12. Schmidt D, Goronzy JJ, Weyand CM. CD4+ CD7−. J Clin Invest. 1996; 97:2027–2037.
13. Liuzzo G, Kopecky SL, Frye RL, O'Fallon WM, Maseri A, Goronzy JJ, Weyand CM. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999; 100:2135–2139.
14. Betjes MG, Huisman M, Weimar W, Litjens NH. Expansion of cytolytic CD4+. Kidney Int. 2008; 74:760–767.
15. Dumitriu IE, Araguas ET, Baboonian C, Kaski JC. CD4
+ CD28 null T cells in coronary artery disease: when helpers become killers. Cardiovasc Res. 2009; 81:11–19.
16. Fann M, Chiu WK, Wood WH III, Levine BL, Becker KG, Weng NP. Gene expression characteristics of CD28null memory phenotype CD8
+ T cells and its implication in T-cell aging. Immunol Rev. 2005; 205:190–206.
17. Valenzuela HF, Effros RB. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol. 2002; 105:117–125.
18. Chiu WK, Fann M, Weng NP. Generation and growth of CD28nullCD8
+ memory T cells mediated by IL-15 and its induced cytokines. J Immunol. 2006; 177:7802–7810.
19. Borthwick NJ, Lowdell M, Salmon M, Akbar AN. Loss of CD28 expression on CD8(+) T cells is induced by IL-2 receptor gamma chain signalling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol. 2000; 12:1005–1013.
20. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ. Down-regulation of CD28 expression by TNF-alpha. J Immunol. 2001; 167:3231–3238.
21. Liaskou E, Jeffery LE, Trivedi PJ, Reynolds GM, Suresh S, Bruns T, Adams DH, Sansom DM, Hirschfield GM. Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis. Gastroenterology. 2014; 147:221–232.
22. Vallejo AN, Weyand CM, Goronzy JJ. Functional disruption of the CD28 gene transcriptional initiator in senescent T cells. J Biol Chem. 2001; 276:2565–2570.
23. Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev. 2005; 205:158–169.
24. Cavanagh MM, Weyand CM, Goronzy JJ. Chronic inflammation and aging: DNA damage tips the balance. Curr Opin Immunol. 2012; 24:488–493.
25. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010; 22:507–513.
26. Franceschi C, Bonafe M, Valensin S, Olivieri F, De LM, Ottaviani E, De BG. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000; 908:244–254.
27. Ortiz-Suarez A, Miller RA. A subset of CD8 memory T cells from old mice have high levels of CD28 and produce IFN-gamma. Clin Immunol. 2002; 104:282–292.
28. Pitcher CJ, Hagen SI, Walker JM, Lum R, Mitchell BL, Maino VC, Axthelm MK, Picker LJ. Development and homeostasis of T cell memory in rhesus macaque. J Immunol. 2002; 168:29–43.
29. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004; 172:2731–2738.
30. Kipling D, Cooke HJ. Hypervariable ultra-long telomeres in mice. Nature. 1990; 347:400–402.
31. High KP, Akbar AN, Nikolich-Zugich J. Translational research in immune senescence: assessing the relevance of current models. Semin Immunol. 2012; 24:373–382.
32. Weyand CM, Brandes JC, Schmidt D, Fulbright JW, Goronzy JJ. Functional properties of CD4+. Mech Ageing Dev. 1998; 102:131–147.
33. Dumitriu IE, Baruah P, Finlayson CJ, Loftus IM, RF Antunes, Lim P, Bunce N, Kaski JC. High levels of costimulatory receptors OX40 and 4-1BB characterize CD4
+CD28null T cells in patients with acute coronary syndrome. Circ Res. 2012; 110:857–869.
34. Chanouzas D, Dyall L, Dale J, Moss P, Morgan M, Harper L. CD4+. Lancet. 2015; 385:Suppl 1. S30.
35. Dumitriu IE. The life (and death) of CD4
+ CD28(null) T cells in inflammatory diseases. Immunology. 2015; 146:185–193.
36. Maly K, Schirmer M. The story of CD4+. J Immunol Res. 2015; 2015:348746.
37. Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2003; 100:9452–9457.
38. Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ, Weyand CM, Goronzy JJ. Killer cell activating receptors function as costimulatory molecules on CD4
+CD28null T cells clonally expanded in rheumatoid arthritis. J Immunol. 2000; 165:1138–1145.
39. Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ. Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med. 2001; 193:1159–1167.
40. Lee WW, Yang ZZ, Li G, Weyand CM, Goronzy JJ. Unchecked CD70 expression on T cells lowers threshold for T cell activation in rheumatoid arthritis. J Immunol. 2007; 179:2609–2615.
41. Di Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, Macaulay R, Kipling D, Soares MV, Battistini L, Akbar AN. Reversible senescence in human CD4+CD45RA+. J Immunol. 2011; 187:2093–2100.
42. Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014; 15:965–972.
43. Fasth AE, Snir O, Johansson AA, Nordmark B, Rahbar A, Af KE, Bjorkstrom NK, Ulfgren AK, van Vollenhoven RF, Malmstrom V, Trollmo C. Skewed distribution of proinflammatory CD4+CD28null T cells in rheumatoid arthritis. Arthritis Res Ther. 2007; 9:R87.
44. McInnes IB, O'Dell JR. State-of-the-art: rheumatoid arthritis. Ann Rheum Dis. 2010; 69:1898–1906.
45. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011; 365:2205–2219.
46. Martens PB, Goronzy JJ, Schaid D, Weyand CM. Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum. 1997; 40:1106–1114.
47. Namekawa T, Wagner UG, Goronzy JJ, Weyand CM. Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum. 1998; 41:2108–2116.
48. Schirmer M, Vallejo AN, Weyand CM, Goronzy JJ. Resistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4+. J Immunol. 1998; 161:1018–1025.
49. Vallejo AN, Schirmer M, Weyand CM, Goronzy JJ. Clonality and longevity of CD4
+CD28null T cells are associated with defects in apoptotic pathways. J Immunol. 2000; 165:6301–6307.
50. Warrington KJ, Takemura S, Goronzy JJ, Weyand CM. CD4+. Arthritis Rheum. 2001; 44:13–20.
51. Thewissen M, Somers V, Hellings N, Fraussen J, Damoiseaux J, Stinissen P. CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. J Immunol. 2007; 179:6514–6523.
52. Zal B, Kaski JC, Arno G, Akiyu JP, Xu Q, Cole D, Whelan M, Russell N, Madrigal JA, Dodi IA, Baboonian C. Heat-shock protein 60-reactive CD4
+CD28null T cells in patients with acute coronary syndromes. Circulation. 2004; 109:1230–1235.
53. Alonso-Arias R, Moro-Garcia MA, Vidal-Castineira JR, Solano-Jaurrieta JJ, Suarez-Garcia FM, Coto E, Lopez-Larrea C. IL-15 preferentially enhances functional properties and antigen-specific responses of CD4
+CD28(null) compared to CD4
+CD28
+ T cells. Aging Cell. 2011; 10:844–852.
54. Broux B, Mizee MR, Vanheusden M, van der PS, van HJ, Van WB, Somers V, de Vries HE, Stinissen P, Hellings N. IL-15 amplifies the pathogenic properties of CD4+. J Immunol. 2015; 194:2099–2109.
55. Goronzy JJ, Weyand CM. T-cell co-stimulatory pathways in autoimmunity. Arthritis Res Ther. 2008; 10:Suppl 1. S3.
56. Fasth AE, Bjorkstrom NK, Anthoni M, Malmberg KJ, Malmstrom V. Activating NK-cell receptors co-stimulate CD4(+)CD28(−) T cells in patients with rheumatoid arthritis. Eur J Immunol. 2010; 40:378–387.
57. Goronzy JJ, Henel G, Sawai H, Singh K, Lee EB, Pryshchep S, Weyand CM. Costimulatory pathways in rheumatoid synovitis and T-cell senescence. Ann N Y Acad Sci. 2005; 1062:182–194.
58. Sawai H, Park YW, Roberson J, Imai T, Goronzy JJ, Weyand CM. T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2005; 52:1392–1401.
59. Leon ML, Zuckerman SH. Gamma interferon: a central mediator in atherosclerosis. Inflamm Res. 2005; 54:395–411.
60. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002; 105:570–575.
61. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL, Weyand CM. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000; 101:2883–2888.
62. Liuzzo G, Biasucci LM, Trotta G, Brugaletta S, Pinnelli M, Digianuario G, Rizzello V, Rebuzzi AG, Rumi C, Maseri A, Crea F. Unusual CD4
+CD28null T lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol. 2007; 50:1450–1458.
63. Brugaletta S, Biasucci LM, Pinnelli M, Biondi-Zoccai G, Di GG, Trotta G, Liuzzo G, Crea F. Novel anti-inflammatory effect of statins: reduction of CD4
+CD28null T lymphocyte frequency in patients with unstable angina. Heart. 2006; 92:249–250.
64. Betjes MG. Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol. 2013; 9:255–265.
65. Betjes MG, Weimar W, Litjens NH. Circulating CD4(+)CD28null T Cells May Increase the risk of an atherosclerotic vascular event shortly after kidney transplantation. J Transplant. 2013; 2013:841430.
66. Brando B, Sommaruga E, Civati G, Busnach G, Broggi ML, Seveso M, Minetti L. Monitoring of CD4+. Transplant Proc. 1989; 21:1192–1193.
67. Pawlik A, Florczak M, Masiuk M, Dutkiewicz G, Machalinski B, Rozanski J, Domanski L, Gawronska-Szklarz B. The expansion of CD4+. Transplant Proc. 2003; 35:2902–2904.
68. Pawlik A, Florczak M, Masiuk M, Machalinski B, Syczewska M, Szych Z, Gawronska-Szklarz B. The increased number of CD4+. Ann Transplant. 2003; 8:54–56.
69. Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, Swanson SJ, Mannon RB, Roederer M, Kirk AD. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant. 2005; 5:465–474.
70. Trzonkowski P, Zilvetti M, Friend P, Wood KJ. Recipient memory-like lymphocytes remain unresponsive to graft antigens after CAMPATH-1H induction with reduced maintenance immunosuppression. Transplantation. 2006; 82:1342–1351.
71. Espinosa J, Herr F, Tharp G, Bosinger S, Song M, Farris AB III, George R, Cheeseman J, Stempora L, Townsend R, Durrbach A, Kirk AD. CD57(+) CD4 T Cells Underlie Belatacept-Resistant Allograft Rejection. Am J Transplant. 2016; 16:1102–1112.
72. Shabir S, Smith H, Kaul B, Pachnio A, Jham S, Kuravi S, Ball S, Chand S, Moss P, Harper L, Borrows R. Cytomegalovirus-Associated CD4(+) CD28(null) Cells in NKG2D-Dependent Glomerular Endothelial Injury and Kidney Allograft Dysfunction. Am J Transplant. 2016; 16:1113–1128.
73. Mou D, Espinosa J, Lo DJ, Kirk AD. CD28 negative T cells: is their loss our gain? Am J Transplant. 2014; 14:2460–2466.
74. Murakami N, Riella LV. CD4+ CD28-Negative Cells: Armed and Dangerous. Am J Transplant. 2016; 16:1045–1046.