Journal List > Korean J Hematol > v.41(3) > 1032666

Kim, Choi, Jeong, Min, Kim, and Kim: Killer Cell Immunoglobulin-like Receptor (KIR) Analysis in Adult Korean Patients with Acute Myeloid Leukemia

Abstract

Background:

The prevalent natural killer (NK) cells induce alloreaction against leukemic cells during post-transplant. NK cell alloreactivity depends on the compatibility of killer cell immunoglobulin-like receptors (KIR) epitopes for graft-versus-host disease. Genotypic expressions of inhibitory or activating KIR in patients with acute myelogenous leukemia (AML) and their HLA-matched sibling donors, as a model for Korean KIR haplotype diversity and NK alloreactivity, were investigated.

Methods:

Ninety-two patients in complete remission and their 76 HLA-matched sibling donors were enrolled in this study. All the patients were scheduled to receive allogeneic hematopoietic stem cell transplantations (HSCT). KIR PCR-SSP typing was performed for 19 different kinds of KIR genes and pseudogenes. The PCR data representing the KIR genotypes from both the patients and donors were compared.

Results:

We found 43 Korean KIR haplotypes. Thirty-three variable haplotypes for the AML patients, in addition to 25 haplotypes for the normal HSCT donors, were demonstrated. Of note, the expressions of specific genes such as 2DL2 (P=0.026), 2DS2 (P=0.042), and 2DS4 (P=0.037) revealed remarkable differences between the patients and the normal donors. Korean HLA-identical sibling pairs showed 38% KIR matches in terms of the gene content and allelic polymorphism. Although the KIR gene content was the same between the patients and the donors, 40% of those matched pairs of patients and donors showed allelic polymorphism, specifically in the context of 2DL5 and 2DS4 genes.

Conclusion:

These results indicate that the expressions of donor inhibitory and activating repertoire of KIR genotypes, even in the HLA-matched sibling setting, are unique parameters to be considered when we perform allogeneic sibling HSCT.

REFERENCES

1). Ruggeri L., Capanni M., Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002. 295:2097–100.
crossref
2). Parham P., McQeen KL. Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nat Rev Immunol. 2003. 3:108–22.
crossref
3). Godfrey DI., MacDonald HR., Kronenberg M., Smyth MJ., Van Kaer L. NKT cells: what's in a name? Nat Rev Immunol. 2004. 4:231–7.
crossref
4). Degli-Esposti MA., Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol. 2005. 5:112–24.
crossref
5). Farag SS., Fehniger TA., Ruggeri L., Velardi A., Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002. 100:1935–47.
crossref
6). Ljunggren HG., Karre K. In search of the ‘missing self': MHC molecules and NK cell recognition. Immunol Today. 1990. 11:237–44.
crossref
7). Gagne K., Brizard G., Gueglio B, et al. Relevance of KIR gene polymorphisms in bone marrow transplantation outcome. Hum Immunol. 2002. 63:271–80.
crossref
8). Aversa F., Tabilio A., Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998. 339:1186–93.
crossref
9). Hsu KC., Chida S., Geraghty DE., Dupont B. The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev. 2002. 190:40–52.
crossref
10). Kim HJ., Min WS., Kim YJ., Kim DW., Lee JW., Kim CC. Haplotype mismatched transplantation using high doses of peripheral blood CD34+ cells together with stratified conditioning regimens for high-risk adult acute myeloid leukemia patients: a pilot study in a single Korean institution. Bone Marrow Transplant. 2005. 35:959–64.
crossref
11). Verheyden S., Schots R., Duquet W., Demanet C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia. 2005. 19:1446–51.
crossref
12). Cook MA., Milligan DW., Fegan CD, et al. The impact of donor KIR and patient HLA-C genotypes on outcome following HLA-identical sibling hematopoietic stem cell transplantation for myeloid leukemia. Blood. 2004. 103:1521–6.
crossref

Fig. 1
KIR genotyping by PCR-SSP in a specific AML patient. Details are described in ‘Materials and Methods’. 1, 2DL1; 2, 2DL2; 3, 2DL3; 4, 2DL4; 5, 2DL5A; 6, 2DL5B∗002/004; 7, 2DL5B∗003; 8, 2DS1; 9, 2DS2; 10, 2DS3; 11, 2DS4∗ 00101/00102/002; 12, 2 DS4∗003; 13, 2DS5; 14, 3DL1; 15, 3DL2; 16, 3DL3; 17, 3DS1; 18, 2DP1; 19, 3DP1∗001/001; 20, 3DP1∗00301/00302; 21, negative control; M, marker.
kjh-41-139f1.tif
Table 1.
Summarized data of KIR genotyping from normal transplantation donors in this study (n=76)
Genotype 2DL 2DS 3DL 3D-S1 2D-P1 3DP No. of KIR genes Genotypes
1 2 3 4 5AB 5A 5B 1 2 3 4 4v 5 1 2 3 1 1v No. %
1                   8 14 18.4
2                     8 14 18.4
3             11 5 6.6
4             11 5 6.6
5                     8 5 6.6
6                       7 4 5.3
7                       7 3 3.9
8             11 3 3.9
9             11 3 3.9
10                     7 2 2.7
11           12 2 2.7
12                 8 2 2.7
13           11 2 2.7
14           12 1 1.3
15                 9 1 1.3
16             11 1 1.3
17                   8 1 1.3
18                 9 1 1.3
19                 9 1 1.3
20           12 1 1.3
21             10 1 1.3
22                             4 1 1.3
23                     8 1 1.3
24           11 1 1.3
25           11 1 1.3
Table 2.
Summarized data of KIR genotyping from acute myelogenous leukemia patients in this study (n=92)
Genotype 2DL 2DS 3DL 3D-S1 2D-P1 3DP No. of KIR genes Genotypes
1 2 3 4 5AB 5A 5B 1 2 3 4 4v 5 1 2 3 1 1v No. %
1                   8 15 16.3
2                     8 13 14.1
3                       7 7 7.6
4                     7 6 6.5
5             11 5 5.3
6             11 5 5.3
7                     8 4 4.3
8                       7 3 3.2
9             11 2 2.2
10           12 2 2.2
11                 9 2 2.2
12           11 2 2.2
13           11 2 2.2
14                 9 2 2.2
15               9 2 2.2
16             11 2 2.2
17               10 2 2.2
18             11 1 1.1
19         12 1 1.1
20                   8 1 1.1
21                 9 1 1.1
22           11 1 1.1
23       13 1 1.1
24           11 1 1.1
25                       7 1 1.1
26                       7 1 1.1
27           11 1 1.1
28       12 1 1.1
29           11 1 1.1
30             11 1 1.1
31             11 1 1.1
32               10 1 1.1
33             11 1 1.1
Table 3.
Summarized data of KIR genotyping from all enrolled individuals in this study (n=168)
Genotype 2DL 2DS 3DL 3D-S1 2D-P1 3DP No. of KIR genes Genotypes
1 2 3 4 5AB 5A 5B 1 2 3 4 4v 5 1 2 3 1 1v No. %
1                   8 29 17.3
2                     8 27 16.1
3                       7 11 6.5
4             11 10 5.9
5             11 10 5.9
6                     8 9 5.4
7                     7 8 4.8
8                       7 6 3.6
9             11 5 3.0
10             11 4 2.4
11           12 3 1.7
12                 9 3 1.7
13           11 3 1.7
14           12 2 1.2
15         12 2 1.2
16           11 2 1.2
17               10 2 1.2
18                 9 2 1.2
19               9 2 1.2
20             11 2 1.2
21                   8 2 1.2
22                 9 2 1.2
23                 10 2 1.2
24                 9 1 0.6
25           12 1 0.6
26             10 1 0.6
27             11 1 0.6
28           11 1 0.6
29               10 1 0.6
30       13 1 0.6
31             11 1 0.6
32                             4 1 0.6
33           11 1 0.6
34                       7 1 0.6
35                     8 1 0.6
36           11 1 0.6
37                       7 1 0.6
38           11 1 0.6
39       12 1 0.6
40             11 1 0.6
41           11 1 0.6
42             11 1 0.6
43           11 1 0.6
TOOLS
Similar articles