Abstract
Introduction
This study examined the effect of autogenous tooth bone used as a graft material for bone regeneration in an artificial bony defect of minipigs.
Materials and Methods
Four healthy minipigs, weighing approximately 35–40 kg, were used. Four standardized artificial two-walled bony defects, 5 mm in length and depth, were made on the bilateral partial edentulous alveolar ridge on the mandible of minipigs, and autogenous tooth bone was augmented in the right side as the experimental group. On the other hand, only alloplastic bone graft material HA was grafted with the same size and manner in the left side as the control group. All minipigs were sacrificed at 4 weeks after a bone graft and evaluated histologically by Haematoxylin-eosin staining. The specimens were also evaluated semi-quantitatively via a histomorphometric study. The percentage of new bone over the total area was evaluated using digital software for an area calculation.
Results
All specimens were available but one in the left side (control group) and two in the right side (experimental group) were missing during specimen preparation. The amount of bone formation and remodeling were higher in all experimental groups than the control. The mean percentage area for new bone in the experimental and control groups was 43.74±11.96% and 30.79±2.93%, respectively.
References
1. Alberius P, Dahlin C. Linde A. Role of osteopromotion in experimental bone grafting to the skull: a study in adult rats using a membrane technique. J Oral Maxillofac Surg. 1992; 50:829–34.
2. Hiatt WH, Schallhorn RG. Intraoral transplants of cancellous bone and marrow in periodontal lesions. J Periodontol. 1973; 44:194–208.
3. Ellegaard B, Karring T, Davies R, Lo¨e H. New attachment after treatment of intrabony defects in monkeys. J Periodontol. 1974; 45:368–77.
5. Quattlebaum JB, Mellonig JT, Hensel NF. Antigenicity of freeze-dried cortical bone allograft in human periodontal osseous defects. J Periodontol. 1988; 59:394–7.
6. Schwartz Z, Mellonig JT, Carnes DL Jr, de la Fontaine J, Cochran DL, Dean DD, et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol. 1996; 67:918–26.
7. Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol. 1999; 70:1053–63.
8. Han T, Carranza FA Jr, Kenney EB. Calcium phosphate ceramics in dentistry: a review of the literature. J West Soc Periodontol Periodontal Abstr. 1984; 32:88–108.
9. Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109:496–503.
10. Kim SG, Yeo HH, Kim YK. Grafting of large defects of the jaws with a particulate dentin-laster of Paris combination. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 88:22–5.
11. Kim SG, Chung CH, Kim YK. Grafting defects using a particulate dentin-laster of Paris combination for implant placement: a case report. Hosp Dent Oral-Maxillofac Surg. 2001; 13:127–30.
12. Kim SG, Chung CH, Kim YK, Park JC, Lim SC. Use of particulate dentin-laster of Paris combination with/without platelet-rich plasma in the treatment of bone defects around implants. Int J Oral Maxillofac Implants. 2002; 17:86–94.
13. Hwang YJ, Kim SG, Yoon JH, Lim SC. Effect of the bone regeneration of the mixture of human, bovine, pig, rabbit, or dog toosh-ash and the plaster of Paris in rats. J Korean Assoc Maxillofac Plast Reconstr Surg. 2004; 26:155–61.
14. Park SS, Kim SG, Lim SC, Ong JL. Osteogenic activity of the mixture of chitosan and particulate dentin. J Biomed Materials Res A. 2008; 87:618–23.
15. Kim SG, Kim HK, Lim SC. Combined implantation of particulate dentin, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J Craniomaxillofac Surg. 2001; 29:282–8.
16. Ike M, Urist MR. Recycled dentin root matrix for a carrier of recombinant human bone morphogenetic protein. J Oral Implantol. 1998; 24:124–32.
17. Gao J, Symons AL, Bartold PM. Expression of transforming growth factor-beta 1 (TGF-beta1) in the developing periodontium of rats. J Dent Res. 1998; 77:1708–16.
18. Saygin NE, Tokiyasu Y, Giannobile WV, Somerman MJ. Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol. 2000; 71:1591–600.
19. Emecen P, Akman AC, Hakki SS, Hakki EE, Demiralp B, To¨zu¨m TF, et al. ABM/P-15 modulates proliferation and mRNA synthesis of growth factors of periodontal ligament cells. Acta Odontol Scand. 2009; 67:65–73.