Journal List > Korean J Physiol Pharmacol > v.13(1) > 1025653

Kim, Jung, Sohn, and Im: Quantitative Structure Activity Relationship between Diazabicyclo-[4.2.0]octanes Derivatives and Nicotinic Acetylcholine Receptor Agonists

Abstract

Three dimensional quantitative structure activity relationship between diazabicyclo[4.2.0]octanes and nicotinic acetylcholine receptor (hα4β2 and hα3β4) agonists was studied using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). From 11 CoMFA and CoMSIA models, CoMSIA with steric and electrostatic fields gave the best predictive models (q2=0.926 and 0.945, r2ncv=0.983 and 0.988). This study can be used to develop potent hα4β2 receptor agonists with low activity on hα3β4 subtype.

REFERENCES

Cashin AL., Torrice MM., McMenimen KA., Lester HA., Dougherty DA. Chemical-scale studies on the role of a conserved aspartate in preorganizing the agonist binding site of the nicotinic acetylcholine receptor. Biochemistry. 46:630–639. 2007.
crossref
Dehkordi O., Millis RM., Dennis GC., Jazini E., Williams C., Hussain D., Jayam-Trouth A. Expression of α-7 and α-4 nicotinic acetylcholine receptors by GABAergic neurons of rostral ventral medulla and caudal pons. Brain Res. 1185:95–102. 2007.
Dougherty JJ., Wu J., Nichols RA. β-Amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci. 23:6740–6747. 2003.
crossref
Frost MJ., Bunnelle HW., Tietje KR., Anderson DJ., Rueter LE., Curzon P., Surowy CS., Jerome JJ., Kohlhaas DK., Buckley MJ., Henry RF., Dyhring T., Ahring PK., Meyer MD. Synthesis and structure-activity relationships of 3,8-diazabicyclo[4.2.0]octane ligands, potent nicotinic acetylcholine receptor agonists. J Med Chem. 49:7843–7853. 2006.
Girod R., Barazangi N., McGehee D., Role LW. Facilitation of glutamatergic neurotransmission by presynaptic nicotinic acetylcholine receptors. Neuropharmacology. 39:2715–2725. 2000.
crossref
Gotti C., Zoli M., Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance Trends. Pharmacol Sci. 27:482–491. 2006.
Grady SR., Salminen O., Laverty DC., Whiteaker P., McIntosh JM., Collins AC., Marks MJ. The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem Pharmacol. 74:1235–1246. 2007.
crossref
Hays JT., Ebbert J., Sood A. Efficacy and safety of varenicline for smoking cessation. Am J Med. 121:S32–S42. 2008.
crossref
Hogg RC., Bertrand D. Neuroscience: What genes tell us about nicotine addiction. Science. 306:983–985. 2004.
Jensen AA., Fr⊘lund B., Liljefors T., Krogsgaard LP. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem. 48:4705–4745. 2005.
crossref
Kenny PJ., File SE., Neal MJ. Evidence for a complex influence of nicotinic acetylcholine receptors on hippocampal serotonin release. J Neurochem. 75:2409–2414. 2000.
crossref
Kuryatov A., Onksen J., Lindstrom J. Roles of accessory subunits in α4β2 nicotinic receptors. Molecular Pharmacology. 74:132–143. 2008.
crossref
Lape R., Colquhoun D., Sivilotti LG. On the nature of partial agonism in the nicotinic receptor superfamily. Nature. 454:722–727. 2008.
crossref
O'Leary KT., Parameswaran N., Johnston LC., McIntosh JM., Di Monte DA., Quik M. Paraquat exposure reduces nicotinic receptor-evoked dopamine release in monkey striatum. J Pharmacol Exp Ther. 327:124–129. 2008.
Owen RT., Serradell N., Rosa E. Ispronicline: nicotinic acetylcholine α4β2 agonist treatment of cognition disorders. Drugs of the Future. 33:197–202. 2008.
Pons S., Fattore L., Cossu G., Tolu S., Porcu E., McIntosh JM., Changeux JP., Maskos U., Fratta W. Crucial role of α4 and α6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci. 28:12318–12327. 2008.
crossref
Vincler M., McIntosh JM. Targeting the α9 α10 nicotinic acetylcholine receptor to treat severe pain. Expert Opinion on Therapeutic Targets. 11:891–897. 2007.
SYBYL Molecular Modeling Software. Tripos Inc.;St. Louis, USA: 2008.

Fig. 1.
The superimposed structures of aligned training set.
kjpp-13-55f1.tif
Fig. 2.
CoMSIA contour map of steric field for the hα4β2 subtype.
kjpp-13-55f2.tif
Fig. 3.
CoMSIA contour map of electrostatic field for the hα4β2 subtype.
kjpp-13-55f3.tif
Fig. 4.
CoMSIA contour map of steric field for the hα3β4 subtype.
kjpp-13-55f4.tif
Fig. 5.
CoMSIA contour map of electrostatic field for the hα3β4 subtype.
kjpp-13-55f5.tif
Table 1.
Structures and biological activity of 3-N-substituted diazabicyclo[4.2.0]octanes
kjpp-13-55f6.tif
Table 2.
Structures and biological activity of 8-N-substituted diazabicyclo[4.2.0]octanes
kjpp-13-55f7.tif
Table 3.
CoMFA and CoMSIA results of the training set
Field q2 N SEP§ r2ncv|| SEE F∗∗ Contributions
S E H D A
hα4β2 subtype                      
 CoMFA                      
  S 0.832 6 0.375 0.967 0.166 147.107 1        
  E 0.819 6 0.390 0.966 0.168 143.232   1      
  SE 0.892 6 0.301 0.987 0.104 382.064 0.534 0.466      
 CoMSIA                      
  SE 0.926 6 0.249 0.983 0.120 285.165 0.128 0.872      
  SEH 0.695 6 0.506 0.987 0.103 393.914 0.077 0.567 0.356    
  SED 0.866 6 0.335 0.978 0.134 227.120 0.056 0.454   0.490  
  SEA 0.884 6 0.312 0.978 0.136 220.764 0.117 0.782     0.101
  SEDA 0.833 6 0.374 0.973 0.151 178.867 0.048 0.395   0.506 0.050
  SEHD 0.595 1 0.608 0.980 0.129 248.687 0.046 0.339 0.199 0.415  
  SEHA 0.650 6 0.542 0.986 0.110 344.311 0.067 0.422 0.356   0.156
  SEHDA 0.605 5 0.576 0.987 0.104 386.129 0.034 0.249 0.226 0.363 0.127
hα3β4 subtype                      
 CoMFA                      
  S 0.787 6 0.518 0.948 0.255 91.574 1        
  E 0.830 6 0.462 0.969 0.197 157.454   1      
  SE 0.934 6 0.288 0.985 0.139 319.679 0.512 0.488      
  CoMSIA                      
  SE 0.945 6 0.262 0.988 0.125 399.560 0.152 0.848      
  SEH 0.688 6 0.627 0.979 0.162 234.901 0.084 0.529 0.387    
  SED 0.900 6 0.354 0.975 0.179 191.750 0.061 0.426   0.513  
  SEA 0.871 6 0.402 0.976 0.174 202.120 0.148 0.773     0.079
  SEDA 0.868 5 0.408 0.972 0.189 171.724 0.057 0.404   0.484 0.055
  SEHD 0.717 4 0.600 0.981 0.154 259.610 0.038 0.306 0.204 0.452  
  SEHA 0.669 6 0.645 0.975 0.176 197.341 0.074 0.368 0.367   0.190
  SEHDA 0.749 4 0.571 0.983 0.147 287.861 0.034 0.216 0.232 0.388 0.129

Fields used, S=steric, E=electrostatic, H=hydrophobics, D=H-bond donor, A=H-bond acceptor;

q2, cross-validated correlation coefficient from leave-one-out (LOO);

N, optimum number of components;

§ SEP, standard error of prediction;

|| 2ncv, non-cross-validated correlation coefficient;

SEE, standard error of estimate;

∗∗ F, F-test value.

Table 4.
CoMSIA actual and predicted activity (pEC50) of the training set
No hα4β2 subtype h α3β4 subtype No hα4β2 subtype hα3β4 subtype
Actual Predicted Residuals Actual Predicted Residuals Actual Predicted Residuals Actual Predicted Residuals
1 7.15 7.37 −0.22 7.32 7.17 0.15 20 6.96 7.04 −0.08 6.08 6.00 0.08
2 6.48 6.54 −0.06 6.59 6.54 0.05 21 7.68 7.73 −0.05 8.10 8.22 −0.12
3 7.89 7.86 0.03 7.54 7.73 −0.19 22 6.44 6.39 0.05 6.80 6.79 0.01
4 7.62 7.78 −0.16 7.60 7.36 0.24 23 8.21 8.00 0.21 8.36 8.24 0.12
5 6.82 6.63 0.19 7.12 7.29 −0.17 24 6.39 6.41 −0.02 5.77 5.63 0.14
6 6.00 6.07 −0.07 6.02 6.11 −0.09 25 7.43 7.60 −0.17 5.86 5.89 −0.03
7 7.92 8.03 −0.11 8.00 8.15 −0.15 26 6.67 6.71 −0.04 5.82 5.80 0.02−0.11
8 8.11 7.84 0.27 8.09 7.91 0.18 27 6.75 6.90 −0.15 6.47 6.58  
9 7.12 7.05 0.07 6.96 7.05 −0.09 28 6.87 6.95 −0.08 6.53 6.52 0.01−0.04
10 8.14 8.09 0.05 8.14 8.06 0.08 29 6.70 6.58 0.12 6.69 6.73  
11 7.33 7.29 0.04 7.15 7.20 −0.05 30 5.66 5.90 −0.24 5.59 5.53 0.06−0.17
12 5.72 5.72 0.00 6.31 6.20 0.11 31 5.71 5.92 −0.21 5.25 5.42  
13 6.89 6.92 −0.03 6.74 6.56 0.18 32 6.96 7.02 −0.06 6.10 6.08 0.02−0.01
14 5.57 5.60 −0.03 5.35 5.41 −0.06 33 6.76 6.73 0.03 6.62 6.63  
15 5.66 5.56 0.10 5.96 6.17 −0.21 34 5.83 5.78 0.05 4.63 4.51 0.12
16 5.30 5.32 −0.02 5.62 5.58 0.04 35 6.47 6.54 −0.07 5.13 5.16 −0.03
17 6.21 6.20 0.01 6.91 6.94 −0.03 36 5.11 5.06 0.05 4.20 4.28 −0.08
18 5.87 5.64 0.23 5.55 5.66 −0.11 37 5.96 5.98 −0.02 5.36 5.28 0.08
19 6.19 6.14 0.05 5.85 5.83 0.02              
Table 5.
CoMSIA actual and predicted activity (pEC50) of the test set
No hα4β2 s u btype hα3β4 subtype
Actual Predicted Residuals Actual Predicted Residuals
T1 7.09 7.05 0.04 6.96 7.05 −0.09
T2 5.72 5.85 −0.13 6.00 5.82 0.18
T3 7.00 7.00 0.00 6.41 6.60 −0.19
T4 6.74 6.55 0.19 5.24 5.26 −0.02
T5 5.85 5.70 0.15 5.81 5.98 −0.17
T6 7.12 7.11 0.01 5.72 5.95 −0.23
T7 5.77 5.77 0.00 5.53 5.37 0.16
TOOLS
Similar articles