Journal List > J Korean Assoc Pediatr Surg > v.19(2) > 1015919

Chang, Kim, Min, Kim, Jung, Park, and Lee: Risk Factors for Malignancy of Pheochromocytoma and Abdominal Paraganglioma in Children: Clinicopathologic Perspectives

REFERENCES

1. DeLellis RA. Pathology and genetics of tumours of endocrine organs. World Health Organization classification of tumours;Lyon: IARC Press;2004. p. 147–150.
2. Spoudeas HA. Paediatric endocrine tumours. West Sussex UK: Novo Nordisk;2005. p. 81–92.
3. Waguespack SG, Rich T, Grubbs E, Ying AK, Perrier ND, Ayala-Ramirez M, Jimenez C. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. Journal of Clinical Endocrinology & Metabolism. 95(5):2023–2037. 2010.
crossref
4. Eisenhofer G, Bornstein SR, Brouwers FM, Cheung NK, Dahia PL, de Krijger RR, Giordano TJ, Greene LA, Goldstein DS, Lehnert H, Manger WM, Maris JM, Neumann HP, Pacak K, Shulkin BL, Smith DI, Tischler AS, Young WF Jr. Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer. 11(3):423–36. 2004.
crossref
5. Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V, Khau Van Kien P, Corvol P, Plouin PF, Jeunemaitre X. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer research. 63(17):5615–5621. 2003.
6. Thompson LD. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol. 26(5):551–66. 2002.
7. Strong VE, Kennedy T, Al-Ahmadie H, Tang L, Coleman J, Fong Y, Brennan M, Ghossein RA. Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery. 143(6):759–68. 2008.
crossref
8. de Krijger RR, van der Harst E, van der Ham F, Stijnen T, Dinjens WN, Koper JW, Bruining HA, Lamberts SW, Bosman FT. Prognostic value of p53, bcl-2, and c-erbB-2 protein expression in phaeochromocytomas. The Journal of pathology. 188(1):51–55. 1999.
crossref
9. August C, August K, Schroeder S, Bahn H, Hinze R, Baba HA, Kersting C, Buerger H. CGH and CD 44/MIB-1 immunohistochemistry are helpful to distinguish metastasized from nonmeta-stasized sporadic pheochromocytomas. Modern pathology. 17(9):1119–1128. 2004.
crossref
10. Lam KY, Lo CY, Wat NM, Luk JM, Lam KS. The clinicopathological features and importance of p53, Rb, and mdm2 expression in phaeochromocytomas and paragangliomas. Journal of clinical pathology. 54(6):443–448. 2001.
crossref
11. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. The Journal of Immunology. 133(4):1710–1715. 1984.
12. Nagura S, Katoh R, Kawaoi A, Kobayashi M, Obara T, Omata K. Immunohistochemical estimations of growth activity to predict biological behavior of pheochromocytomas. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 12(12):1107. 1999.
13. Elder EE, Xu D, Höög A, Enberg U, Hou M, Pisa P, Gruber A, Larsson C, Bäckdahl M. KI-67 and hTERT expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma. Modern pathology. 16(3):246–255. 2003.
crossref
14. Pinato DJ, Ramachandran R, Toussi STK, Vergine M, Ngo N, Sharma R, Lloyd T, Meeran K, Palazzo F, Martin N, Khoo B, Dina R, Tan TM. Immunohistochemical markers of the hypoxic response can identify malignancy in phaeochromocytomas and paragangliomas and optimize the detection of tumours with VHL germline mutations. British Journal of Cancer. 2013; 108:429–437.
crossref
15. Stojadinovic A, Ghossein RA, Hoos A, Nissan A, Marshall D, Dudas M, Cordon-Cardo C, Jaques DP, Brennan MF. Adrenocortical carcinoma: clinical, morphologic, and molecular characterization. Journal of Clinical Oncology. 20(4):941–950. 2002.
crossref
16. Pham TH, Moir C, Thompson GB, Zarroug AE, Hamner CE, Farley D, van Heerden J, Lteif AN, Young WF Jr. Pheochromocytoma and paraganglioma in children: a review of medical and surgical management at a tertiary care center. Pediatrics. 118(3):1109–1117. 2006.
crossref
17. Burnichon N, Rohmer V, Amar L, Herman P, Leboulleux S, Darrouzet V, Niccoli P, Gaillard D, Chabrier G, Chabolle F, Coupier I, Thieblot P, Lecomte P, Bertherat J, Wion-Barbot N, Murat A, Venisse A, Plouin PF, Jeunemaitre X, Gimenez-Roqueplo AP. PGL.NET network. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab. 94(8):2817–2827. 2009.
crossref
18. McNicol AM. Differential diagnosis of pheochromocytomas and paragangliomas. Endocrine pathology. 12(4):407–415. 2001.
crossref
19. Manger WM, Eisenhofer G. Pheochromocytoma: diagnosis and management update. Current hypertension reports. 6(6):477–484. 2004.
crossref
20. Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, Busaidy N, Cote GJ, Perrier N, Phan A, Patel S, Waguespack S, Jimenez C. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 96(3):717–725. 2011.
crossref
21. Tischler AS. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med. 132(8):1272–1284. 2008.
crossref
22. Wu D, Tischler AS, Lloyd RV, DeLellis RA, de Krijger R, van Nederveen F, Nosé V. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. The American journal of surgical pathology. 33(4):599–608. 2009.
crossref
23. Pollard PJ, El-Bahrawy M, Poulsom R, Elia G, Killick P, Kelly G, Hunt T, Jeffery R, Seedhar P, Barwell J, Latif F, Gleeson MJ, Hodgson SV, Stamp GW, Tomlinson IP, Maher ER. Expression of HIF-1α, HIF-2α (EPAS1), and their target genes in paraganglioma and pheochromocytoma with VHL and SDH mutations. Journal of Clinical Endocrinology & Metabolism. 91(11):4593–4598. 2006.
crossref
24. Ein SH, Pullerits J, Creighton R, Balfe JW. Pediatric pheochromocytoma. A 36-year review. Pediatr Surg Int. 12(8):595–598. 1997.
crossref
25. Perel Y, Schlumberger M, Marguerite G, Alos N, Revillon Y, Sommelet D, De Lumley L, Flamant F, Dyon JF, Lutz P, Heloury H, Lemerle J. Pheochromocytoma and paraganglioma in children: a report of 24 cases of the French Society of Pediatric Oncology. Pediatr Hematol Oncol. 14(5):413–422. 1997.
crossref
26. Reddy VS, O'Neill JA Jr, Ho GW 3rd, Neblett WW 3rd, Pietsch JB, Morgan WM 3rd, Goldstein RE. Twenty-five-year surgical experience with pheochromocytoma in children. Am Surg. 66(12):1085–1092. 2000.

Figure.
The Kaplan-Meier survival curves between benign and malignant PHEO and aPGL (p = .007)
jkaps-19-108f1.tif
Table 1.
Immunohistochemical Panel
Antibody Primary antibody Company Dilution Buffer(pH) Target Stain Cutoff Values§
Ki-67 mm DAKO, Carpinteria, California, USA 1:200 CA (6) N > 2 %
p53 mm DAKO 1:200 CA (6) N > 5 %
mdm-2 mm Leica Biosystems, Heidelberg, Germany 1:100 EDTA (9) N > 50 %
  Santa Cruz        
p21 mm biotechnology, Dallas, 1:200 CA (6) N > 10 %
  Texas, USA        
  Spring Bioscience,        
p27 rp Pleasaton, California, 1:300 CA (6) N > 30 %
  USA        
bcl-2 mm DAKO 1:100 CA (6) C > 50 %
cyclin D1 rp Santa Cruz biotechnology 1:100 CA (6) N > 5 %

mm, mouse monoclonal; rp, rabbit polyclonal

CA, citric acid; EDTA, Ethylenediaminetetraacetic acid

N, Nuclei stain; C, Cytoplasmic stain

§ indicates high proliferative group in Ki-67; otherwise indicates group showed over-expression

Table 2.
Clinical Information of the Patients with PHEO and aPGL
  Total (n=20) PHEO (n=14) aPGL (n=6) P value
Age (months, mean±SD) 143.90 ±40.87 141.93 ±39.26 148.50 ±19.60 .775
Gender (M : F) 15 : 5 9 : 5 6 : 0 .260
Location       .829
  Right (%) 7 (35) 5 (35.7) 2 (33.3%)  
  Left (%) 6 (30) 5 (35.7) 1 (16.7%)  
  Bilateral (%) 7 (35) 4 (28.6) 3 (50.0%)  
Greatest dimension (cm, mean±SD) 4.86 ±1.50 4.84 ±1.26 4.88 ±2.08 .966
Malignancy (%) 7 (35) 4 (28.6) 3 (50.0%) .613
Hereditary Features (%) 4 (20) 4 (28.6) 0 .267
Chemotherapy (%) 2 (10) 0 2 (33.3%) .079
Radiotherapy (%) 6 (30) 3 (21.4) 3 (50.0%) .303
Follow-up(months, mean±SD) 97.25 ±55.67 95.64 ±37.03 101.00 ±90.47 .850
Disease free survival (months, mean±SD) 82.20 ±58.25 82.43 ±43.86 81.67 ±88.82 .985
Median survival (months, range) 86.20 (14-252) 86.50 (50-159) 82.50 (14-252) NA§

Student's t-test

Fisher's exact test

§ Not applicable

Table 3.
Clinical Information of the Patients with Benign and Malignant Tumors
  Benign (n=13) Malignant (n=7) P value
Age (months, mean±SD) 143.77 ± 46.25 144.14 ± 31.78 .983
Gender (M : F) 10 : 3 5 : 2 > .999
Hereditary Features (%) 3 (23.1) 1 (14.3) > .999
Chemotherapy (%) 0 2 (28.6) .111
Radiotherapy (%) 0 6 (85.7) < .001
Location     .381
 Right (%) 5 (38.5) 2 (28.6)  
 Left (%) 5 (38.5) 1 (14.3)  
 Bilateral (%) 3 (23.1) 4 (57.1)  
Greatest dimension (cm, mean±SD) 5.01 ± 1.55 4.57 ± 1.44 .547
Clinical manifestation      
 Hypertension (%) 10 (76.9) 4 (57.1) .613
 Palpitation (%) 7 (53.8) 3 (42.9) > .999
 Headache (%) 6 (46.2) 2 (28.6) .642
 Diaphoresis (%) 7 (53.8) 2 (28.6) .374
 Flushing (%) 9 (69.2) 2 (28.6) .160
 Nausea, vomiting (%) 7 (53.8) 3 (42.9) > .999
Follow-up (months, mean±SD) 90.38 ± 39.48 110.00 ± 80.02 .467
Disease free survival (months, mean±SD) 90.38 ± 39.48 67.00 ± 84.92 .690
Median survival period (months, range) 93.00 (14-159) 80.00 (22-252) NA§

Analysis of all patients with PHEO and aPGL

Student's t-test

Fisher's exact test

§ Not applicable

Table 4.
Microscopic Features of Benign and Malignant Tumors
  Benign (n=13) Malignancy (n=7) P value
Capsular invasion (n, %) 4 (30.8) 3 (42.9) .651
Vascular invasion (n, %) 0 4 (57.1) .007
Extension into adipose tissue (n, %) 1 (7.69) 4 (57.1) .031
Presence of large nests (n, %) 7 (53.8) 1 (14.3) .158
Central tumor necrosis (n, %) 6 (46.2) 5 (71.4) >.999
High cellularity (n, %) 3 (23.1) 2 (28.6) >.999
Tumor cell spindling (n, %) 8 (61.5) 1 (14.3) .070
Cellular monotony (n, %) 3 (23.1) 1 (14.3) >.999
Mitosis (n, %) 1 (7.69) 4 (57.1) .031
Atypical mitosis (n, %) 1 (7.69) 2 (28.6) .270
Nuclear pleomorphism (n, %) 4 (30.8) 0 .249
Nuclear hyperchromasia (n, %) 9 (69.2) 2 (28.6) .160

Analysis of all patients with PHEO and aPGL

Fisher's exact test

Table 5.
Microscopic Features of Benign and Malignant PHEO
  Benign (n=10) Malignancy (n=4) P value
Capsular invasion (n, %) 3 (30) 2 (50) .580
Vascular invasion (n, %) 0 3 (75) .033
Extension into adipose tissue (n, %) 0 3 (75) .003
Presence of large nests (n, %) 7 (70) 0 .023
Central tumor necrosis (n, %) 5 (50) 4 (100) .089
High cellularity (n, %) 3 (30) 1 (25) .857
Tumor cell spindling (n, %) 7 (70) 1 (25) .139
Cellular monotony (n, %) 3 (30) 0 .234
Mitosis (n, %) 1 (10) 3 (75) .019
Atypical mitosis (n, %) 0 1 (25) .114
Nuclear pleomorphism (n, %) 3 (30) 0 .234
Nuclear hyperchromasia (n, %) 8 (80) 0 .008

Analysis of patients with PHEO only

Fisher's exact test

Table 6.
Analysis of PASS Score and Pathologic Score between Benign and Malignant Tumor
  Benign (n=13) Malignancy (n=7) P value
PASS Score (mean±SD) 6.00 ± 2.86 7.57 ± 3.36 .317
 PASS ≥ 4 (n, %) 10 (76.9) 5 (71.4) >.999
 PASS ≥ 6 (n, %) 8 (61.5) 5 (71.4) >.999
Pathologic Score (mean±SD) 0.31 ± 0.86 3.43 ± 2.57 .001
 Score < 2 (n, %) 12 (92.3) 2 (28.5) .007§
 Score ≥ 2 (n, %) 1 (7.7) 5 (71.4)  

Analysis of all patients with PHEO and aPGL

Student's t-test

Mann-Whitney test

§ Fisher's exact test

Table 7.
Immunohistochemistry
Antibody Benign (n=13) Malignancy (n=7) P value
Ki-67 (n, %) 2 (15.4) 4 (57.1) .122
p53 (n, %) 2 (15.4) 3 (42.9) .290
bcl-2 (n, %) 8 (61.5) 4 (57.1) >.999
mdm-2 (n, %) 2 (15.4) 3 (42.9) .290
cyclin D1 (n, %) 0 0 >.999
p21 (n, %) 3 (23.1) 3 (42.9) .613
p27 (n, %) 2 (15.4) 3 (42.9) .290

Number of cases above cutoff values which are listed in Table 1.

Fisher's exact test

TOOLS
Similar articles