Journal List > Korean J Perinatol > v.26(1) > 1013785

Oh, Kim, Do, Lee, Kim, and Kim: Preliminary Study on Neurodevelopmental Outcome and Placental Pathology among Extremely Low Birth Weight Infants

Abstract

Purpose

To investigate the relationship between placental pathology and neurodevelopmental outcomes among extremely low birth weight (ELBW) infants

Methods

Pathology of placentas from ELBW infants born at a tertiary neonatal intensive care unit from January 2007 to December 2012 were reviewed and placental histology was grouped into 3 categories by a designated pathologist: acute chorioamnionitis (ACA), maternal vascular underperfusion (MVU), and control group. Matched ELBW infants were tested for significant neurodevelopmental delays defined as mental developmental index (MDI) or psychomotor developmental index (PDI) <70, using Bayley Scales of Infant Development-II (BSID-II).

Results

The mean gestational age and birth weight of 175 infants were 27.1±2.5 weeks and 764.7±152.3 g respectively. Placental histology revealed MVU (48.0%), ACA (25.1%) and control (26.9%) in distribution. There were less significant patent ductus arteriosus in MVU group than in control group [adjusted odds ratio (OR)=0.331, P=0.011]. The frequencies of other neonatal diseases and mortality were similar in 3 groups. Sixty four of 175 infants were examined for BSID-II at mean corrected 19.9±3.2 months. MVU was associated with significant mental developmental delay (OR=5.185, P=0.036), but after adjustment for head circumference/weight at birth, the statistically significance of association disappeared (adjusted OR=4.391, P=0.075). ACA did not affect neonatal and neurodevelopmental outcomes.

Conclusion

The result of placenta biopsy could be a useful tool in counseling parents for future neurode-velopmental outcome, however, further studies are required to define definitive association in between placenta biopsy and neurodevelopmental outcomes.

References

1. Redline RW, Heller D, Keating S, Kingdom J. Placental diagnostic criteria and clinical correlation–a workshop report. Placenta. 2005; 26(Suppl A):S114–7.
2. Perrone S, Toti P, Toti MS, Badii S, Becucci E, Gatti MG, et al. Perinatal outcome and placental histological characteristics: a single-center study. J Matern Fetal Neonatal Med. 2012; 25(Suppl 1):110–3.
crossref
3. Dammann O, Brinkhaus MJ, Bartels DB, Dordelmann M, Dressler F, Kerk J, et al. Immaturity, perinatal inflammation, and retinopathy of prematurity: a multi-hit hypothesis. Early Hum Dev. 2009; 85:325–9.
crossref
4. Hartling L, Liang YY, Lacaze-Masmonteil T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and metaanalysis. Arch Dis Child Fetal Neonatal Ed. 2012; 97:F8–17.
crossref
5. Mitra S, Aune D, Speer CP, Saugstad OD. Chorioamnionitis as a Risk Factor for Retinopathy of Prematurity: A Systematic Review and Meta-Analysis. Neonatology. 2014; 105:189–99.
crossref
6. Wu YW, Colford JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: A metaanalysis. JAMA. 2000; 284:1417–24.
crossref
7. Wu YW, Escobar GJ, Grether JK, Croen LA, Greene JD, Newman TB. Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA. 2003; 290:2677–84.
crossref
8. Suppiej A, Franzoi M, Vedovato S, Marucco A, Chiarelli S, Zanardo V. Neurodevelopmental outcome in preterm histological chorioamnionitis. Early Hum Dev. 2009; 85:187–9.
crossref
9. Rovira N, Alarcon A, Iriondo M, Ibanez M, Poo P, Cusi V, et al. Impact of histological chorioamnionitis, funisitis and clinical chorioamnionitis on neurodevelopmental outcome of preterm infants. Early Human Dev. 2011; 87:253–7.
crossref
10. Andrews WW CS, Biasini F, Peralta-Carcelen AM, Rector R, Alriksson-Schmidt Al. Early preterm birth: association between in utero exposure to acute inflammation and severe neurodevelopmental disability at 6 years of age. Am J Obstet Gynecol. 2008; 198:446.e1–11.
11. Mu SC, Lin CH, Sung TC, Chen YL, Lin YC, Lee CC, et al. Neurodevelopmental outcome of very-low-birthweight infants with chorioamnionitis. Acta paediatr Taiwan. 2007; 48:207–12.
12. Polam S, Koons A, Anwar M, Shen-Schwarz S, Hegyi T. Effect of chorioamnionitis on neurodevelopmental outcome in preterm infants. Pediatr Adolesc Med. 2005; 159:1032–5.
crossref
13. Oqunyemi D MM, Jackson U, Hunter N, Alperson B. The relationship between placental histopathology findings and perinatal outcome in preterm infants. J Matern Fetal Neonatal Med. 2003; 13:102–9.
14. van Vliet EOG, de Kieviet JF, van der Voorn JP, Been JV, Oosterlaan J, van Elburg RM. Placental pathology and longterm neurodevelopment of very preterm infants. Am J Obstet Gynecol. 2012; 206:489.e1–7.
crossref
15. Parra-Saavedra M CF, Triunfo S, Savchev S, Pequero A, Nadal A, et al. Neurodevelopmental outcome of near-term small-for-gestational-age infants with and without signs of placental underperfusion. Placenta. 2014; 35:269–74.
16. Son SH, Choi KY, Lee JM, Shin SH, Kim C, Kim YJ, et al. Comparison of the incidences of neonatal morbidities by different criteria of histologic chorioamnionitis in extremely low gestational age newborns. Neontal Med. 2013; 20:35–41.
crossref
17. Yoo C, Jang DG, Jo YS, Yoo J, Lee G. Pathologic differences between placentas from intrauterine growth restriction pregnancies with and without absent or reveresed end diastolic velocity of umbilical arteries Korean J Pathol. 2011; 45:36–44.
18. Fenton TR. A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. BMC pediatr. 2003; 3:13.
crossref
19. Sankilampi U, Hannila ML, Saari A, Gissler M, Dunkel L. New population-based references for birth weight, length, and head circumference in singletons and twins from 23 to 43 gestation weeks. Ann Med. 2013; 45:446–54.
crossref
20. Bell MJ TJ, Feigin RD, Keating JP, Marshall R, Barton L. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978; 187:1–7.
21. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978; 92:529–34.
crossref
22. Jobe AH, Ikegami M. Prevention of bronchopulmonary dysplasia. Curr Opin Pediatr. 2001; 13:124–9.
crossref
23. Almog B, Shehata F, Aljabri S, Levin I, Shalom-Paz E, Shrim A. Placenta weight percentile curves for singleton and twins deliveries. Placenta. 2011; 32:58–62.
crossref
24. Goldenberg RL, Andrews WW, Hauth JC. Choriodecidual infection and preterm birth. Nutr Rev. 2002; 60:S19–25.
crossref
25. Kovo M, Schreiber L, Ben-Haroush A, Wand S, Golan A, Bar J. Placental vascular lesion differences in pregnancy-induced hypertension and normotensive fetal growth restriction. Am J Obstet Gynecol. 2010; 202:561.e1–5.
crossref
26. Aviram R, T BS, Kidron D. Placental aetiologies of foetal growth restriction: clinical and pathological differences. Early Hum Dev. 2010; 86:59–63.
crossref
27. Vedmedovska N, Rezeberga D, Teibe U, Melderis I, Donders GG. Placental pathology in fetal growth restriction. Eur J Obst Gynecol Reprod Biol. 2011; 155:36–40.
crossref
28. Rakza T, Magnenant E, Klosowski S, Tourneux P, Bachiri A, Storme L. Early hemodynamic consequences of patent ductus arteriosus in preterm infants with intrauterine growth restriction. J Pediatr. 2007; 151:624–8.
crossref
29. Been JV, Lievense S, Zimmermann LJI, Kramer BW, Wolfs TGAM. Chorioamnionitis as a risk factor for necrotizing enterocolitis: A systematic review and metaanalysis. J Pediatr. 2013; 162:236–42.e2.
30. Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology. 2002; 22:106–32.
crossref
31. Savchev S, Sanz-Cortes M, Cruz-Martinez R, Arranz A, Botet F, Gratacos E, et al. Neurodevelopmental outcome of fullterm small-for-gestational-age infants with normal placental function. Ultrasound Obstet Gynecol. 2013; 42:201–6.
crossref
32. Gavilanes AW, Strackx E, Kramer BW, Gantert M, Van den Hove D, Steinbusch H, et al. Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval-dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol. 2009; 200:437.e1–8.
crossref
33. Feldhaus B, Dietzel ID, Heumann R, Berger R. Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J Soc Gynecol Investig. 2004; 11:89–96.
34. Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol. 2012; 67:287–94.
crossref
35. Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Nurosci. 2006; 26:4752–62.
crossref
36. Redline R, Minich N, Taylor HG, Hack M. Placental lesions as predictors of cerebral palsy and abnormal neurocognitive function at school age in extremely low birth weight infants (<1 kg). Pediatr Dev Pathol. 2007; 10:282–92.
37. Nasef N, Shabaan AE, Schurr P, Iaboni D, Choudhury J, Church P, et al. Effect of clinical and histological chorioamnionitis on the outcome of preterm infants. Am J Perinatol. 2013; 30:59–68.
crossref
38. Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, et al. Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci. 2001; 13:1101–6.
crossref
39. Garnier Y, Coumans AB, Jensen A, Hasaart TH, Berger R. Infection-related perinatal brain injury: the pathogenic role of impaired fetal cardiovascular control. J Soc Gynecol Investig. 2003; 10:450–9.
crossref
40. Kent A, Lomas F, Hurrion E, Dahlstrom JE. Antenatal steroids may reduce adverse neurological outcome following chorioamnionitis: Neurodevelopmental outcome and chorioamnionitis in premature infants. J Paediatr Child H. 2005; 41:186–90.
crossref

Fig. 1.
Light microscopic findings of placental lesions. (A)-(C) compatible with amniotic fluid infection. (A) Umbilical vasculitis, a classical fetal inflammatory response (H-E stain, x100). (B) Necrotizing funisitis showing diffuse band of neutrophil debris in the Wharton's jelly (X40). (C) Acute chorioamnionitis of the chorioamniotic membranes, indicative of maternal inflammatory response. There is diffuse infiltration of the maternal neutrophils into the amnion (X200). Figure D-F compatible with maternal vascular underperfusion. (D) Increased syncytial knots. Almost every chorionic villus has syncytial knots (X100). (E) Acute villous infarct showing coagulation necrosis (X100). (F) Increased intervillous fibrin (X100).
kjp-26-67f1.tif
Table 1.
Perinatal characteristics
Characteristics Control (n=47) ACA (n=44) MVU (n=84) P-value
Gestational age (weeks) 26.4±2.3 25.6±1.2 28.2±2.6 <0.001
Birth weight (g) 766.5±139.2 816.9±121.0 736.4±167.4 0.035
SGA, n (%) 13 (26.5) 0 (0) 51 (60.7) <0.001
HC (cm) 23.8±1.5 23.6±1.8 24.3±2.0 0.025
HC <10p, n (%) 12 (25.0) 4 (9.5) 44 (53.0) <0.001
HC/weight (cm/g X100) 3.2±0.5 2.9±0.3 3.4±0.8 <0.001
Male, n (%) 23 (48.9) 21 (47.7) 52 (61.9) 0.211
Multiple gestation, n (%) 31 (63.3) 17 (38.6) 30 (35.7) 0.002
Apgar score at 1min 3.5±1.7 3.2±1.5 3.9±2.0 0.099
Apgar score at 5mins 5.8±1.5 5.4±1.4 6.3±1.8 0.002
Initial pH 7.2±0.1 7.2±0.1 7.2±0.1 0.325
Initial base deficit (mmEq/L) 6.0±4.4 7.3±5.0 6.8±5.0 0.462
Lactic acid (mmol/L) 4.6±2.9 4.3±2.8 5.8±3.7 0.064
Cesarean delivery, n (%) 28 (57.1) 14 (31.8) 72 (85.7) <0.001
PPROM > 18hrs, n (%) 7 (14.3) 17 (38.6) 9 (10.7) <0.001
Oligohydramnios 5 (10.6) 1 (2.3) 13 (15.5) 0.079
PIH, n (%) 2 (4.1) 1 (2.3) 28 (33.3) <0.001
Gestational diabetes, n (%) 2 (4.3) 0 (0) 2 (2.4) 0.474
Antenatal corticosteroid, n (%) 27 (55.1) 25 (56.8) 53 (63.1) 0.789
Maternal age (years) 31.0±4.2 33.3±3.3 31.5±4.2 0.017
Maternal education (College) 37 (78.7) 36 (81.8) 61 (72.6) 0.473
Placental weight (g), 211.7±69.5 249.6±92.6 203.6±79.9 0.011
Placental weight<10p, n (%) 8 (53.3) 10 (37.0) 51 (80.9) <0.001
Birth weight/placental weight (g/g), 3.9±1.4 3.6±1.0 4.2±1.3 0.170

Abbreviations: ACA, acute chorioamnionitis; MVU, maternal vascular underperfusion; SGA, small for gestational age; HC, head circumference; PPROM, preterm premature rupture of membrane; PIH, pregnancy-induced hypertension.

Data are given as mean ± standard deviation.

One hundred five placentas of 175 infants were checked for placental weights excluding fused placentas of twins.

Table 2.
Perinatal mortality and morbidity among neonates with acute chorioamnionitis and maternal vascular underperfusion
  ACA MVU
Odds ratio 95% % CI P-value Odds ratio 95% % CI P-value
Mortality 1.150 0.379 3.491 0.805 2.139 0.741 6.173 0.160
PDA 0.468 0.190 1.151 0.098 0.331 0.141 0.778 0.011
NEC 0.648 0.234 1.789 0.402 0.598 0.204 1.750 0.348
Early sepsis 1.421 0.218 9.285 0.714 2.257 0.359 14.202 0.386
Late sepsis 0.962 0.385 2.403 0.934 0.561 0.235 1.341 0.193
IVH 0.715 0.234 2.185 0.556 0.861 0.284 2.605 0.791
PVL 2.430 0.549 10.753 0.242 0.944 0.168 5.312 0.948
ROP 1.916 0.579 6.334 0.287 1.688 0.478 5.965 0.416
BPD 0.382 0.129 1.131 0.082 0.801 0.297 2.159 0.662

Abbreviations: ACA, acute chorioamnionitis; MVU, maternal vascular underperfusion; CI, confidence interval; PDA, patent ductus arteriosus; NEC, necrotizing enterocolitis; IVH, intraventricular hemorrhage; PVL, periventricular leukomalacia; ROP, retinopathy of prematurity; BPD, bronchopulmonary dysplasia

Adjusted by gestational age and birth weight

Table 3.
Comparisons of neurodevelopmental delay based on the placental pathology
Developmental index Control (n=18, 28.1%) ACA (n=13, 20.3%) MVU (n=33, 51.6%) P-value
MDI<85 (n=36, 56.3%) 8 (44.4%) 4 (30.8%) 24 (72.7%) 0.018
PDI<85 (n=32, 50.0%) 10 (55.6%) 5 (38.5%) 17 (51.5%) 0.713
70≤MDI<85 (n=18, 28.1%) 5 (27.8%) 4 (30.8%) 9 (27.3%) 1.000
70≤PDI<85 (n=13, 20.3%) 4 (22.2%) 3 (23.1%) 6 (18.2%) 0.846
MDI<70 (n=18, 28.1%) 3 (16.7%) 0 (0.0%) 15 (45.5%) 0.003
PDI<70 (n=19, 29.7%) 6 (33.3%) 2 (15.4%) 11 (33.3%) 0.476

Abbreviations: ACA, acute chorioamnionitis; MVU, maternal vascular underperfusion; MDI, mental developmental index PDI, psychomotor developmental index

Table 4.
Neurodevelopmental outcome among neonates with acute chorioamnionitis or maternal vascular underperfusion
Developmental index Placental pathology Odds ratio 95% C.I. P-value
70≤MDI<85 Control 1   0.277
  ACA 0.889 0.181 4.375 0.885
  MVU 2.222 0.547 9.023 0.264
MDI<70 Control 1    
  ACA Infinite 0.993  
  MVU 5.185 1.114 24.142 0.036
70≤PDI<85 Control 1   0.694
  ACA 0.444 0.063 3.112 0.414
  MVU 0.750 0.163 3.441 0.711
PDI<70 Control 1    
  ACA 0.296 0.046 1.908 0.200
  MVU 0.917 0.248 3.389 0.896

Abbreviations: CI, confidence interval; MDI, mental developmental index; PDI, psychomotor developmental index, ACA, acute chorioamnionitis; MVU, maternal vascular underperfusion

Table 5.
Neurodevelopmental outcome among neonates with acute chorioamnionitis or maternal vascular underperfusion after multivariable logistic regression
Developmental index Placental pathology Odds ratio 95% CI P-value
70≤MDI<85 Control 1    
ACA 1.931 0.325 11.476 0.469
MVU 1.845 0.398 8.558 0.434
MDI<70 Control 1    
ACA Infinite 0.963  
MVU 4.391 0.863 22.357 0.075
70≤PDI<85 Control 1    
ACA 0.619 0.082 4.660 0.641
MVU 0.581 0.118 2.869 0.505
PDI<70 Control 1    
ACA 0.533 0.075 3.788 0.529
MVU 0.620 0.147 2.612 0.515

Abbreviations: CI, confidence interval; MDI, mental developmental index; PDI, psychomotor developmental index, ACA, acute chorioamnionitis; MVU, maternal vascular underperfusion

Adjusted for head circumference/birth weight

TOOLS
Similar articles