Journal List > Korean J Perinatol > v.24(2) > 1013702

Lee: Strategy of Dagnosis and Treatment for Hemodynamically Significant Patent Ductus Arteriosus in Preterm Infants

Abstract

Patent ductus arteriosus (PDA) is a major morbidity in preterm infants, especially in extremely premature infants less than 28 weeks. Early diagnosis of hemodynamically significant PDA (hs-PDA) is not easy because the symptoms of PDA in preterm infants are non-specific. Echocardiography is a good diagnostic tool for early detection of PDA. Clinical investigation has been continued to establish a criteria for selecting an infant who needs early targeted treatment of PDA by echocardiography. The biomarkers such as brain natriuretic peptide (BNP) and N-terminal pro-BNP (NTpBNP) are currently under research as a diagnostic and prognostic marker of PDA. Cyclooxygenase (COX) inhibitor is the treatment of choice and highly effective for PDA closure in preterm infants. Oral ibuprofen is emerging as a better alternative because it is as effective as indomethacin with fewer side effects. PDA ligation is a treatment option for hs-PDA when medical treatment is failed. There is lack of long term benefits of such treatments to induce ductal closure. Thus, it is prudent to treat an infant with clinically significant PDA on the basis of gestational age, birth weight, clinical status, and echocardiographic findings. Better diagnostic tools to identify infants who might benefit from ductal closure are needed.

REFERENCES

1). Burnard ED. The cardiac murmur in relation to symptoms in the newborn. Br Med J. 1959. 1:134–8.
crossref
2). El-Khuffash AF., Slevin M., McNamara PJ., Molloy EJ. Troponin T, N-terminal pro natriuretic peptide and a patent ductus arteriosus scoring system predict death before discharge or neurodevelopmental outcome at 2 years in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2011. 96:F133–7.
crossref
3). Northway Jr WH., Rosan RC., Porter DY. Pulmonary disease following respiratory therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967. 276:357–68.
4). Siassi B., Emmanouilides GC., Cleveland RJ., Hirose F. Patent ductus arteriosus complicating prolonged assisted ventilation in respiratory distress syndrome. J Pediatr. 1969. 74:11–9.
5). Finlay ER., Subhedar NV. Pulmonary haemorrhage in preterm infants. Eur J Pediatr. 2000. 159:870–1.
crossref
6). Dollberg S., Lusky A., Reichman B. Patent ductus arteriosus, indomethacin and necrotizing enterocolitis in very low birth weight infants: a population-based study. J Pediatr Gastro-enterol Nutr. 2005. 40:184–8.
crossref
7). Vanpee M., Ergander U., Herin P., Aperia A. Renal function in sick, very low-birthweight infants. Acta Paediatr. 1993. 82:714–8.
8). Dykes FD., Lazzara A., Ahmann P., Blumenstein B., Schwartz J., Brann AW. Intraventricular hemorrhage: a prospective evaluation of etiopathogenesis. Pediatrics. 1980. 66:42–9.
crossref
9). Shortland DB., Gibson NA., Levene MI., Archer LN., Evans DH., Shaw DE. Patent ductus arteriosus and cerebral circulation in preterm infants. Dev Med Child Neurol. 1990. 32:386–93.
crossref
10). Drougia A., Giapros V., Krallis N., Theocharis P., Nikaki A., Tzoufi M, et al. Incidence and risk factors for cerebral palsy in infants with perinatal problems: a 15-year review. Early Hum Dev. 2007. 83:541–7.
crossref
11). Dudell GG., Gersony WM. Patent ductus arteriosus in neonates with severe respiratory disease. J Pediatr. 1984. 104:915–20.
crossref
12). Thébaud B., Michelakis ED., Wu XC., Moudgil R., Kuzyk M., Dyck JR, et al. Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation. 2004. 110:1372–9.
13). Kajimoto H., Hashimoto K., Bonnet SN., Haromy A., Harry G., Moudgil R, et al. Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction. Circulation. 2007. 115:1777–88.
14). Echtler K., Stark K., Lorenz M., Kerstan S., Walch A., Jennen L, et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med. 2010. 16:75–82.
crossref
15). Liu H., Manganiello V., Waleh N., Clyman RI. Expression, activity, and function of phosphodiesterases in the mature and immature ductus arteriosus. Pediatr Res. 2008. 64:477–81.
crossref
16). Clyman RI., Couto J., Murphy GM. Patent ductus arteriosus: are current neonatal treatment options better or worse than no treatment at all? Semin Perinatol. 2012. 36:123–9.
crossref
17). Nemerofsky SL., Parravicini E., Bateman D., Kleinman C., Polin RA., Lorenz JM. The ductus arteriosus rarely requires treatment in infants >1000 grams. Am J Perinatol. 2008. 25:661–6.
18). Koch J., Hensley G., Roy L., Brown S., Ramaciotti C., Rosenfeld CR. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Pediatrics. 2006. 117:1113–21.
crossref
19). Reller MD., Rice MJ., McDonald RW. Review of studies evaluating ductal patency in the premature infant. J Pediatr. 1993. 122:S59–62.
crossref
20). Gentile R., Stevenson G., Dooley T., Franklin D., Kawabori I., Pearlman A. Pulsed Doppler echocardiographic in determination of time of ductal closure in normal newborn infants. J Pediatr. 1981. 98:443–8.
21). Gonzalez A., Sosenko IR., Chandar J., Hummler H., Claure N., Bancalari E. Influence of infection on patent ductus arteriosus and chronic lung disease in premature infants weighing 1000 grams or less. J Pediatr. 1996. 128:470–8.
crossref
22). Bell EF., Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2001. 3:CD000503.
crossref
23). Green TP., Thompson TR., Johnson DE., Lock JE. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory distress syndrome. N Engl J Med. 1983. 308:743–8.
24). Rosenfeld W., Sadhev S., Brunot V., Jhaveri R., Zabaleta I., Evans HE. Phototherapy effect on the incidence of patent ductus arteriosus in premature infants: Prevention with chest shielding. Pediatrics. 1986. 78:10–4.
crossref
25). Andriessen P., Struis NC., Niemarkt H., Oetomo SB., Tanke RB., Van Overmeire B. Furosemide in preterm infants treated with indomethacin for patent ductus arteriosus. Acta Paediatr. 2009. 98:797–803.
crossref
26). Clyman RI., Jobe A., Heymann M., Ikegami M., Roman C., Payne B, et al. Increased shunt through the patent ductus arteriosus after surfactant replacement therapy. J Pediatr. 1982. 100:101–7.
27). Reller MD., Buffkin DC., Colasurdo MA., Rice MJ., McDonald RW. Ductal patency in neonates with respiratory distress syndrome. A randomized surfactanttrial. Am J Dis Child. 1991. 145:1017–20.
28). Carlo WA., Finer NN., Walsh MC., Rich W., Gantz MG., Laptook AR, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010. 362:1959–69.
crossref
29). Clyman RI., Ballard PL., Sniderman S., Ballard RA., Roth R., Heymann MA, et al. Prenatal administration of betamethasone for prevention of patent ductus arteriosus. J Pediatr. 1981. 98:123–6.
crossref
30). Chorne N., Jegatheesan P., Lin E., Shi R., Clyman RI. Risk factors for persistent ductus arteriosus patency during indomethacin treatment. J Pediatr. 2007. 151:629–34.
crossref
31). Iyer P., Evans N. Re-evaluation of the left atrial to aortic root ratio as a marker of patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed. 1994. 70:F112–7.
crossref
32). Evans N. Current controversies in the diagnosis and treatment of patent ductus arteriosus in preterm infants. Adv Neonatal Care. 2003. 3:168–77.
crossref
33). Evans N., Iyer P. Longitudinal changes in the diameter of the ductus arteriosus in ventilated preterm infants: Correlation with respiratory outcomes. Arch Dis Child Fetal Neonatal Ed. 1995. 72:F156–61.
crossref
34). Su BH., Peng CT., Tsai CH. Echocardiographic flow pattern of patent ductus arteriosus: A guide to indomethacin treatment in premature infants. Arch Dis Child Fetal Neonatal Ed. 1999. 81:F197–200.
crossref
35). Kishkurno S., Takahashi Y., Harada K., Ishida A., Tamura M., Takada G. Postnatal changes in left ventricular volume and contractility in healthy term infants. Pediatr Cardiol. 1997. 18:91–5.
crossref
36). McNamara PJ., Sehgal A. Towards rational management of the patent ductus arteriosus: The need for disease staging. Arch Dis Child Fetal Neonatal Ed. 2007. 92:F424–7.
crossref
37). Sehgal A., McNamara PJ. Does echocardiography facilitate determination of hemodynamic significance attributable to the ductus arteriosus? Eur J Pediatr. 2009. 168:907–14.
crossref
38). Murase M., Morisawa T., Ishida A. Serial Assessment of Left-Ventricular Function Using Tissue Doppler Imaging in Premature Infants Within 7 Days of Life. Pediatr Cardiol 2013 [Epub ahead of print].
39). Jantzen DW., Aldoss O., Sanford B., Fletcher SE., Danford DA., Kutty S. Is combined atrial volumetrics by two-dimensional echocardiography a suitable measure for quantitative assessment of the hemodynamic significance of patent ductus arteriosus in neonates and infants? Echocardiography. 2010. 27:696–701.
crossref
40). El-Khuffash A., Barry D., Walsh K., Davis PG., Molloy EJ. Biochemical markers may identify preterm infants with a patent ductus arteriosus at high risk of death or severe intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed. 2008. 93:F407–12.
crossref
41). Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008. 358:2148–59.
crossref
42). Koch A., Singer H. Normal values of B type natriuretic peptide in infants, children, and adolescents. Heart. 2003. 89:875–8.
crossref
43). Choi BM., Lee KH., Eun BL., Yoo KH., Hong YS., Son CS, et al. Utility of rapid B-type natriuretic peptide assay for diagnosis of symptomatic patent ductus arteriosus in pre-term infants. Pediatrics. 2005. 115:e255–61.
crossref
44). Lee JH., Shin JH., Park KH., Rhie YJ., Park MS., Choi BM. Can early B-type natriuretic peptide assays predict symptomatic patent ductus arteriosus in extremely low birth weight infants? Neonatology. 2013. 103:118–22.
crossref
45). Nuntnarumit P., Khositseth A., Thanomsingh P. N-terminal probrain natriuretic peptide and patent ductus arteriosus in preterm infants. J Perinatol. 2009. 29:137–42.
crossref
46). Czernik C., Metze B., Müller C., Bührer C. Urinary NT-proBNP and ductal closure in preterm infants. J Perinatol. 2013. 33:212–7.
crossref
47). Vanhaesebrouck S., Zonnenberg I., Vandervoort P., Bruneel E., Van Hoestenberghe MR., Theyskens C. Conservative treatment for patent ductus arteriosus in the preterm. Arch Dis Child Fetal Neonatal Ed. 2007. 92:F244–7.
crossref
48). Berman W Jr., Dubynsky O., Whitman V., Friedman Z., Maisels MJ. Digoxin therapy in low-birth-weight infants with patent ductus arteriosus. J Pediatr. 1978. 93:652–5.
crossref
49). Green TP., Thompson TR., Johnson DE., Lock JE. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N Engl J Med. 1983. 308:743–8.
crossref
50). Chauhan M., Henderson G., McGuire W. Enteral feeding for very low birth weight infants: reducing the risk of necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed. 2008. 93:F162–6.
crossref
51). Tammela OK., Lanning FP., Koivisto ME. The relationship of fluid restriction during the 1st month of life to the occurrence and severity of bronchopulmonary dysplasia in low birth weight infants: a 1-year radiological follow up. Eur J Pediatr. 1992. 151:367–71.
crossref
52). Van Overmeire B., Smets K., Lecoutere D., Van de Broek H., Weyler J., Degroote K, et al. A comparison of ibuprofen and indomethacin for closure of patent ductus arteriosus. N Engl J Med. 2000. 343:674–81.
crossref
53). Fowlie PW., Davis PG., McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev. 2010. 7:CD000174.
crossref
54). Cooke L., Steer P., Woodgate P. Indomethacin for asymptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2003. 2:CD003745.
crossref
55). Schmidt B., Roberts RS., Fanaroff A., Davis P., Kirpalani HM., Nwaesei C, et al. Indomethacin prophylaxis, patent ductus arteriosus, and the risk of bronchopulmonary dysplasia: further analyses from the Trial of Indomethacin Prophylaxis in Preterms (TIPP). J Pediatr. 2006. 148:730–4.
crossref
56). Herrera C., Holberton J., Davis P. Prolonged versus short course of indomethacin for the treatment of patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2007. 2:CD003480.
crossref
57). Ohlsson A., Walia R., Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2013. 4:CD003481.
crossref
58). Gournay V., Savagner C., Thiriez G., Kuster A., Rozé JC. Pulmonary hypertension after ibuprofen prophylaxis in very preterm infants. Lancet. 2002. 359:1486–8.
crossref
59). Cassady G., Crouse DT., Kirklin JW., Strange MJ., Joiner CH., Godoy G, et al. A randomized, controlled trial of very early prophylactic ligation of the ductus arteriosus in babies who weighed 1000 g or less at birth. N Engl J Med. 1989. 320:1511–6.
crossref
60). Malviya MN., Ohlsson A., Shah SS. Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2013. 3:CD003951.
crossref
61). Cotton RB., Stahlman MT., Bender HW., Graham TP., Catterton WZ., Kovar I. Randomized trial of early closure of symptomatic patent ductus arteriosus in small preterm infants. J Pediatr. 1978. 93:647–51.
crossref
62). Jhaveri N., Moon-Grady A., Clyman RI. Early surgical ligation versus a conservative approach for management of patent ductus arteriosus that fails to close after indomethacin treatment. J Pediatr. 2010. 157:381–7.
crossref
63). O'Rourke DJ., El-Khuffash A., Moody C., Walsh K., Molloy EJ. Patent ductus arteriosus evaluation by serial echocardiography in preterm infants. Acta Paediatr. 2008. 97:574–8.
64). Su BH., Lin HC., Chiu HY., Hsieh HY., Chen HH., Tsai YC. Comparison of ibuprofen and indometacin for early-targeted treatment of patent ductus arteriosus in extremely premature infants: a randomized controlled trial. Arch Dis Child Fetal Neonatal Ed. 2008. 93:F94–9.
65). Ment LR., Vohr BR., Makuch RW., Westerveld M., Katz KH., Schneider KC, et al. Prevention of intraventricular hemorrhage by indomethacin in male preterm infants. J Pediatr. 2004. 145:832–4.
crossref

Table 1.
Rates of Spontaneous Ductus Arteriosus Closure (%)17-20
  Closed on Day 4 Closed on Day 7 Closed at Discharge
Gestational age      
  Full term 100 100 100
  30 weeks 90 98 98
  27-28 weeks 22 36 NA
  25-26 weeks 20 32 NA
  24 weeks 8 13 NA
Birth weight      
  1,000-1,500 g 35 67 94
  <1,000 g 21 34 NA

NA, no data available. Quoted from Semin Perinatol 2012;36:123-9.

Table 2.
Proposed Staging System (Adapted from McNamara and Hellman, Unpublished Clinical Triaging System for Ligation of a Patent Ductus Arteriosus (PDA)) for Determining the Magnitude of the Haemodynamically Significant Ductus Arteriosus (HSDA), Which Is Based on Clinical and Echocardiographic Criteria
Clinical Echocardiography
C1 Asymptomatic E1 No evidence of ductal flow on two-dimensional or Doppler interrogation
C2 Mild Oxygenation difficulty (OI <6) Occasional (<6) episodes of oxygen desaturation, bradycardia or apnoea Need for respiratory support (nCPAP) or mechanical ventilation (MAP <8) Feeding intolerance (>20% gastric aspirates) Radiologic evidence of increased pulmonary vascularity E2 Small non-significant ductus arteriosus Transductal diameter <1.5 mm Restrictive continuous transductal flow (DA Vmax >2.0 m/s) No signs of left heart volume loading (eg, mitral regurgitant jet >2.0 m/s or LA:Ao ratio >1.5:1) No signs of left heart pressure loading (eg, E/A ratio >1.0 or IVRT >50) Normal end-organ (eg, superior mesenteric, middle cerebral) arterial diastolic flow
C3 Moderate Oxygenation difficulty (OI 7-14) Frequent (hourly) episodes of oxygen desaturation, bradycardia or apnoea Increasing ventilation requirements (MAP 9-12) Inability to feed due to marked abdominal distension or emesis Oliguria with mild elevation in plasma creatinine Systemic hypotension (low mean or diastolic BP) requiring a single cardiotropic agent Radiological evidence of cardiomegaly or pulmonary oedema Mild metabolic acidosis (pH 7.1-7.25 and/or base deficit -7 to -12.0) E3 Moderate HSDA Transductal diameter 1.5-3.0 mm Unrestrictive pulsatile transductal flow (DA Vmax<2.0 m/s) Mild-moderate left heart volume loading (eg, LA:Ao ratio 1.5 to 2:1) Mild-moderate left heart pressure loading (eg, E/A ratio >1.0 or IVRT 50-60) Decreased or absent diastolic flow in superior mesenteric artery, Middle cerebral artery or renal artery
C4 Severe Oxygenation difficulty (OI >15) High ventilation requirements (MAP >12) or need for high-frequency modes of ventilation Profound or recurrent pulmonary haemorrhage “NEC-like” abdominal distension with tenderness or erythema Acute renal failure Haemodynamic instability requiring >1 cardiotropic agent Moderate-severe metabolic acidosis (pH<7.1) or base deficit >-12.0 E4 Large HSDA Transductal diameter >3.0 mm Unrestrictive pulsatile transductal flow Severe left heart volume loading (eg, LA:Ao ratio >2:1, mitral regurgitant jet >2.0 m/s) Severe left heart pressure loading (eg, E/A ratio >1.5 or IVRT >60) Reversal of end-diastolic flow in superior mesenteric artery, middle cerebral artery or renal artery

Abbreviations: BP, blood pressure; DA Vmax, ductus arteriosus peak velocity; E/A, early passive to late atrial contractile phase of transmitral filling ratio; IVRT, isovolumic relaxation time; LA: Ao ratio, left atrium to aortic ratio; MAP, mean airway pressure; nCPAP, nasal continuous positive airway pressure; NEC, necrotising enterocolitis; OI, oxygenation index. Patients should be assigned both a clinical and echocardiography stage (eg, neonate with severe oxygenation failure, pulmonary haemorrhage and a 3.2 mm unrestrictive left-to-right shunt will be C4-E4 class HSDA). Detailed discussion of the echocardiography parameters is beyond the scope of this perspective. Quoted from Arch Dis Child Fetal Neonatal Ed 2007;92:F424-7.

Table 3.
Comparison of Echocardiographic Markers of Hemodynamically Significant Patent Ductus Arteriosus
  No PDA Small Moderate Large
Characteristics of the ductus arteriosus        
  Transductal diameter (mm) 0 <1.5 1.5-3 >3
  Ductal velocity V max (cm/s) 0 >2 1.5-2 <1.5
  Antegrade PA diastolic flow (cm/s) 0 >30 30-50 >50
Pulmonary overcirculation 25-26 weeks        
  Left atrial/aortic ratio 1.13±0.23 <1.4:1 1.4 -1.6:1 >1.6:1
  Left ventricular/aortic ratio 1.86±0.29 - 2.15±0.39 2.27±0.37
  E wave/A wave ratio <1 <1 1-1.5 >1.5
  IVRT (ms) <55 46-54 36-45 <35
  LVSTI 0.34±0.09 - 0.26±0.03 0.24±0.07
Systemic hypoperfusion        
  Retrograde diastolic flow (%) 10 <30 30-50 >50
  Aortic stroke volume (mL/kg) ≤2.25 - - ≥2.34
  Left ventricular output (mL/kg/min) 190-310 - - >314
  LVO/SVC flow ratio 2.4±0.3 - - 4.5±0.6

Abbreviations: LVO, left ventricular output; SVC, superior vena cava; LVSTI, left ventricular stroke volume index; IVRT, isovolumic relaxation time; PWD, pulse wave Doppler; CWD, continuous wave Doppler; PA, pulmonary artery. Quoted from Eur J Pediatr 2009;168:907-14.

TOOLS
Similar articles