Abstract
Purpose
To compare the biodegradation and osteoconduction properties of CaO-SiO2-B2O3 glass-ceramics (CS10B), hydroxyapatite(HA), and tricalcium phosphate (TCP).
Materials and Methods
Porous CS10B implants were prepared by the polymer sponge method. Single-level posterolateral spinal fusions were performed on thirty rabbits. The animals were divided into three groups by implant material: HA, TCP and CS10B. Radiographs were performed every two weeks. All animals were sacrificed 12 weeks after surgery. The proportion of the area occupied by the ceramicsin the final over the initial radiographs was calculated. Uniaxial tensile strength was determined from 7 cases in each group.
Results
The proportion of the area occupied by HA (88.7±16.1%) was significantly higher than the others (p<0.05), and the proportion of the area occupied by CS10B (28.2±9.3%) was significantly lower than those of HA and TCP (37±9.6%) (p<0.05). The mean values of the tensile strengths of HA (191.4±33.5 N) and CS10B (182.7±19.9 N) were significantly higher (p<0.05) than those of TCP (141.1±28.2 N).