Journal List > Korean J Lab Med > v.30(3) > 1011647

Song, Sung, Kwon, Park, Cho, Shin, Ko, Kim, Shin, and Koo: Analysis of Acquired Resistance Genes in Stenotrophomonas maltophilia

Abstract

Background:

Stenotrophomonas maltophilia is a gram-negative bacillus and a nosocomial pathogen in immunocompromised patients. Trimethoprim/sulfamethoxazole (TMP/SMX) is the drug of choice for treating S. maltophilia infection; however, resistance to TMP/SMX is increasing. In this study, we investigated the relationship between the incidence of TMP/SMX resistance and the presence of sul genes and mobile elements.

Methods:

A total of 120 S. maltophilia isolates were collected from 3 university hospitals between April 2007 and April 2009. Antimicrobial susceptibilities were determined using the disk diffusion method. PCR and DNA sequencing were conducted for the detection of sul1, sul2, class 1 integron, and ISCR2 element. Repetitive extragenic palindromic sequence-based PCR (REP-PCR) was carried out to evaluate the genetic relatedness.

Results:

The TMP/SMX-resistant (R) isolates harbored a significantly higher proportion of sul1 gene and class 1 integron than TMP/SMX-susceptible (S) isolates (P<0.001). Seventeen of 28 isolates with sul1 also had a class 1 integron, but none of the isolates without sul1 had a class 1 integron. The identified gene cassettes within class 1 integrons include aacA4, aadA1, aac6'-II, and qac. None of the 120 isolates carried sul2, glmM, or ISCR2 element. REP-PCR did not show any genetic relatedness among the isolates.

Conclusions:

In Korea, the resistance of S. maltophilia isolates to TMP/SMX is due to sul1 within a class 1 integron rather than to sul2. The class 1 integron also harbors multiple antibiotic resistance genes in addition to sul1, and therefore it could mediate multidrug resistance in S. maltophilia. (Korean J Lab Med 2010;30:295-300)

REFERENCES

1.Chang LL., Lin HH., Chang CY., Lu PL. Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole-resistant clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother. 2007. 59:1038–9.
2.Valdezate S., Vindel A., Loza E., Baquero F., Canton R. Antimicrobial susceptibilities of unique Stenotrophomonas maltophilia clinical strains. Antimicrob Agents Chemother. 2001. 45:1581–4.
3.Ahn GY., Yu FN., Jang SJ., Kim DM., Park G., Moon DS, et al. Pseudooutbreak of Stenotrophomonas maltophilia due to contamination of bronchoscope. Korean J Lab Med. 2007. 27:205–9. (안균열, 유봉남, 장숙진, 김동민, 박 건, 문대수 등. 기관지 내시경 오염에 기인한 Stenotrophomonas maltophilia 의 가유행 발생. 대한진단검사의학회지 2007;27:205-9.).
4.Harlowe HD. Acute mastoiditis following pseudomonas maltophilia infection: case report. Laryngoscope. 1972. 82:882–3.
5.Sutter VL. Identification of Pseudomonas species isolated from hospital environment and human sources. Appl Microbiol. 1968. 16:1532–8.
6.Ben-Tovim T., Eylan E., Romano A., Stein R. Gram-negative bacteria isolated from external eye infections. Infection. 1974. 2:162–5.
crossref
7.Gardner P., Griffin WB., Swartz MN., Kunz LJ. Nonfermentative gramnegative bacilli of nosocomial interest. Am J Med. 1970. 48:735–49.
crossref
8.Seol SY., Jang KS., Jeong OG., Cho ER., Kim NH., Yu HS, et al. Antimicrobial resistance and molecular epidemiologic characteristics of Stenotrophomonas maltophilia isolated from clinical specimen. J Korean Soc Microbiol. 2000. 35:239–50. (설성용, 장경수, 정웅기, 조응래, 김능희, 유학선 등. 병원 재료에서 분리한 Stenotrophomonas maltophilia 의항균제내성및분자역학적특성. 대한미생물학회지 2000;35:239-50.).
9.Chang LL., Chen HF., Chang CY., Lee TM., Wu WJ. Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother. 2004. 53:518–21.
10.Zhang L., Li XZ., Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2001. 45:3497–503.
11.Sader HS., Jones RN. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents. 2005. 25:95–109.
crossref
12.Perreten V., Boerlin P. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother. 2003. 47:1169–72.
13.Toleman MA., Bennett PM., Bennett DM., Jones RN., Walsh TR. Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg Infect Dis. 2007. 13:559–65.
14.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. M100-S18 (M2). Wayne, PA: Clinical and Laboratory Standards Institute;2008.
15.Dillon B., Thomas L., Mohmand G., Zelynski A., Iredell J. Multiplex PCR for screening of integrons in bacterial lysates. J Microbiol Methods. 2005. 62:221–32.
crossref
16.Levesque C., Piche L., Larose C., Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995. 39:185–91.
crossref
17.Lin CW., Chiou CS., Chang YC., Yang TC. Comparison of pulsed-field gel electrophoresis and three rep-PCR methods for evaluating the genetic relatedness of Stenotrophomonas maltophilia isolates. Lett Appl Microbiol. 2008. 47:393–8.
18.Garrison MW., Anderson DE., Campbell DM., Carroll KC., Malone CL., Anderson JD, et al. Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother. 1996. 40:2859–64.
19.Fedler KA., Biedenbach DJ., Jones RN. Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: report from the 2004 SENTRY Antimicrobial Surveillance Program on 3 continents. Diagn Microbiol Infect Dis. 2006. 56:427–36.
crossref
20.Barbolla R., Catalano M., Orman BE., Famiglietti A., Vay C., Smayevsky J, et al. Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob Agents Chemother. 2004. 48:666–9.

Fig. 1.
Repetitive extragenic palindromic-PCR (REP-PCR) fingerprints of S. maltophilia isolates. Lanes M1 are 1-kb DNA size markers.
kjlm-30-295f1.tif
Table 1.
Oligonucleotide primers used for PCR amplification and sequencing
Primer pairs Target Sequence (5′-3′) Reference
Int1 F intI1 CAGTGGACATAAGCCTGTTC [15]
Int1 R   CCCGAGGCATAGACTGTA  
Int2 F intI2 GTAGCAAACGAGTGACGAAATG [15]
Int2 R   CACGGATATGCGACAAAAAGGT  
Int3 F intI3 GCCTCCGGCAGCGACTTTCAG [15]
Int3 R   ACGGATCTGCCAAACCTGACT  
LECR2 ISCR2 CACTGGCTGGCAATGTCTAG [13]
RECR2   CTTTGGACCGCAGTTGACTC  
glmR glmM GAGTCAACTGCGGTCCAAAC [13]
glmF   ACGGTATTCGTGGCAAAGCC  
FloF floR TCGACATCCTGGCTTCACTG [13]
FloR   ATTACAAGCGCGACAGTGGC  
Sul1 F sul1 GGATTTTTCTTGAGCCCCGC [1]
Sul1 R   CATTGCCGATCGCGTGAAGT  
Sul2 F sul2 CCTGTTTCGTCCGACACAGA [1]
Sul2 R   GAAGCGCAGCCGCAATTCAT  

Abbreviations: F, forward; R, reverse.

Table 2.
Incidence of trimethoprim/sulfamethoxazole resistance in S. maltophilia and relation to sul1, sul2, glmM, class 1 integron, and ISCR2 element
  Trimethoprim/sulfamethoxazole P value
Resistant Susceptible
N of isolates 19 101  
N of isolates with sul1 13 15 <0.001
N of isolates with sul2 0 0  
N of isolates with class 1 integrons 10 7 <0.001
N of isolates with ISCR2 0 0  
N of isolates with glmM 0 0  

Fisher's exact test.

TOOLS
Similar articles